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ABSTRACT

The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the struc-
ture and dynamics of black hole emission regions on scales smaller than their horizons. This has the
potential to critically probe the mechanisms by which black holes accrete, launch outflows, and the
structure of supermassive black hole spacetimes. However, accessing this information is a formidable
analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode
information about the image structure in non-trivial ways; these are subject to a variety of systematic
effects associated with very-long baseline interferometry, and are supplemented by a wide variety of
auxiliary data on the primary EHT targets from decades of other observations. Second, models of the
emission regions and their interaction with the black hole are complex, highly uncertain, and compu-
tationally expensive to construct. As a result, the scientific utilization of EHT observations requires a
flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which
defines a set of interfaces between models, data, and sampling algorithms that facilitates future devel-
opment. We describe the design and currently existing components of Themis, how Themis has been
validated thus far, and present additional analyses made possible by Themis that illustrate its capabil-
ities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these,
and do so in a computationally efficient manner that can efficiently exploit modern high-performance
computing facilities. Themis has already played an important role in extracting scientific conclusions
from recent EHT observations, and we expect it to do so in the future.

Keywords: black hole physics — Galaxy: center — methods: data analysis — methods: numerical —
accretion, accretion disks — radiative transfer — submillimeter: general

1. Introduction

The Event Horizon Telescope (EHT), a global array of
millimeter and sub-millimeter radio telescopes, has re-
solved the horizons of at least two black holes (Doele-
man et al. 2009; Doeleman 2010; Doeleman et al. 2008;
Doeleman et al. 2012). This provides a unique window on
the high-energy astrophysical processes responsible for the
substantial growth and inordinate influence of supermas-
sive black holes (Fabian 2012; Heckman & Best 2014), the
dynamics and thermodynamics of material in the strong
gravity regime (Narayan et al. 1998; Yuan & Narayan
2014), and the fundamental nature of black holes (Brod-
erick et al. 2014; Psaltis et al. 2016). However, efficiently
and accurately extracting this information from the obser-
vational data presents numerous challenges, requiring the
development of novel analysis tools tailored to the EHT
data products, EHT-target properties, and auxiliary in-
formation.

The EHT achieves an extraordinary resolution of 13 µas,
making it the highest resolution imaging instrument in the

history of astronomy. It does this via very long baseline
interferometry (VLBI), in which information from pairs
of individual stations separated by Earth-sized distances
are combined to measure small-scale structure on the sky.
The resulting data takes the form of complex visibilities,
directly related to the Fourier transform of the image.
This can be performed in all four Stokes parameters, yield-
ing complete information about the resolved polarization
structures (e.g., Johnson et al. 2015). In the near future,
this will be extended to multiple wavelengths (1.3 mm and
0.87 mm) (Falcke 2017). Millimeter-VLBI observations of
the primary EHT targets have already been carried out
at multiple epochs, covering times ranging from 10 sec-
onds to 10 years (Doeleman et al. 2008; Fish et al. 2011;
Johnson et al. 2015; Fish et al. 2016).

The first horizon-resolving images have been published,
with ancillary scientific analyses (Event Horizon Telescope
Collaboration et al. 2019a,b,c,d,e,f). These have revealed
a resolved shadow with brightness maximum offset from
the direction of the large-scale jet, broadly consistent with
the model predictions in Broderick & Loeb (2009a); Dex-
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ter et al. (2012); Mościbrodzka et al. (2016). Extracting
quantitative information about these has required detailed
model comparisons directly with the complex visibilities
(see, e.g., Event Horizon Telescope Collaboration et al.
2019e,f).

Difficulties in the phase calibration, and lesser — though
still significant — complications in the amplitude calibra-
tion of these visibilities, has motivated the construction
of a set of VLBI observables (e.g., visibility amplitudes,
closure phases (Jennison 1958), closure amplitudes (Twiss
et al. 1960, 1962), visibility polarization fractions (John-
son et al. 2015), etc.) that probe the underlying image
structure in nonintuitive ways. These have traditionally
been interpreted within the context of a simple set of phe-
nomenological models, e.g., multi-component Gaussians.
However, the substantial structure anticipated on horizon
scales exhibited by the primary EHT targets has given rise
to a broader modeling effort, which includes a variety of
physical processes (Narayan et al. 1998; Falcke & Markoff
2000; Yuan et al. 2002; Broderick & Loeb 2006a; Broderick
et al. 2011, 2016; Yuan & Narayan 2014; Gold et al. 2017;
Shiokawa et al. 2017; Chan et al. 2009, 2015; Mościbrodzka
et al. 2009, 2014; Dexter et al. 2009; Dolence et al. 2012;
Chael et al. 2018a).

This modeling effort is further motivated by the large
amount of ancillary data that exists for EHT targets. All
EHT targets are necessarily bright radio sources, and thus
have been the object of substantial astronomical scrutiny.
Both the Galactic center (Sgr A∗) and M87 have been
studied across the electromagnetic spectrum, from de-
cameter wavelengths (de Gasperin et al. 2012) to very-
high energy gamma rays (> 1 TeV) (Eckart et al. 2006).
Moreover, due to the close proximity to their central black
holes, both are empirically highly variable, providing sta-
tistical information about the dynamics within the mm-
wavelength emission regions and creating opportunities
to probe this dynamics directly at multiple wavelengths
(Eckart et al. 2008). Physical modeling of these sources
provides the unique ability to synthesize all of these obser-
vations, which when combined with EHT data, can pro-
vide a detailed description of the conditions and dynamics
of material near black hole horizons.

There are substantial challenges to such a broad model-
ing effort. First and foremost, models of the near hori-
zon region are necessarily complicated, invoking multi-
ple emission components (non-thermal and thermal emis-
sion regions with uncertain and potentially distinct lo-
cations (Özel et al. 2000; Chandra et al. 2015; Davelaar
et al. 2017; Ressler et al. 2015; Chael et al. 2018a)), a
variety of dynamical processes (orbital motion, accretion
flow height, winds, jets, explosive events, etc., (Broder-
ick & Loeb 2006a; Dolence et al. 2012; Medeiros et al.
2018; Jeter et al. 2018; Pu et al. 2016a; Pu & Broder-
ick 2018), strong lensing in a potentially uncertain space-
time (Kerr or beyond, Bambi & Freese 2009; Johannsen &
Psaltis 2010; Broderick et al. 2014; Mizuno et al. 2018; Jo-
hannsen 2013; Johannsen et al. 2016), polarization trans-

fer effects (e.g., Faraday rotation and conversion (Huang &
Shcherbakov 2011; Shcherbakov 2014; Mościbrodzka et al.
2017; Jiménez-Rosales & Dexter 2018)), and propaga-
tion effects (e.g., interstellar scattering (Johnson & Gwinn
2015)). To add to the complexity of this comparison only
Fourier modes along specific tracks in the two-dimensional
Fourier domain are probed via Earth-Aperture synthesis
on time scales that can be comparable to intrinsic source
variability (Lu et al. 2016). Thus, any tools constructed to
make comparisons between physical models of EHT tar-
gets and the collection of EHT and auxiliary data must be
extremely flexible.

Second, there are clear emission-model independent fea-
tures in many images that arise from the structure of
the underlying spacetime. These include the black hole
shadow, the silhouette of the black hole determined by its
photon orbits, as first described by Bardeen (1973). This
is bounded by the photon ring, a bright ring arising from
the stacking of multiple images, in which the gross features
of the spacetime are encoded. Thus, there is substantial
motivation to directly extract these generic features from
the EHT data alone. Again, this is complicated by the
indirect relationship between the VLBI observables and
the image, resulting in frequently counter intuitive con-
clusions. Hence, ideally, any tools for assessing the pres-
ence and properties of image structures should be able to
extend to phenomenological models as well.

Third, the nature of EHT data has evolved rapidly over
the past decade, growing as the sensitivity and baseline
coverage improved. It is far from clear that any particu-
lar set of EHT data types are optimal for a given astro-
physical or gravitational question. In some cases new data
types have been developed based on both instrumental and
observational limitations (e.g., visibility polarization frac-
tions). Similarly, intrinsic source variability has motivated
the development of sophisticated statistical descriptions of
observable quantities (Kim et al. 2016). Given the broad
range of EHT and ancillary data types, any model com-
parison effort must maintain substantial flexibility in the
kinds of information that it can utilize.

Finally, in many cases the construction of physically
realistic models is computationally expensive, requiring
ray tracing (relatively cheap) and radiative transfer (of-
ten expensive) through model structures. This difficulty
is compounded by the often multimodal nature of the re-
constructed posterior parameter distributions (see, e.g.,
Broderick et al. 2016). As a result, any analysis tools
must be both computationally efficient and be able to ex-
ploit the large investment in high-performance computing
resources.

It is to address these challenges that we have begun
the development of an analysis framework for EHT and
ancillary data: Themis. Themis is designed to be modu-
lar, extensible, and highly parallel, enabling the extraction
of increasingly detailed information from EHT observing
campaigns, both individually and in aggregate. Here we
present the underlying design philosophy, structure, and
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validation tests of Themis, including the reproduction of
a variety of published analyses. We then demonstrate the
ability of Themis to trivially extend these, presenting new
analyses of phenomenological models that include the full
set of published EHT observations. Themis has already
been employed in analysis of the first horizon-resolving
imaging observations of M87 by the EHT (Event Horizon
Telescope Collaboration et al. 2019e,f).

In Section 2, we summarize the algorithms, components
and implementation details of Themis. Individual fea-
tures are described in Sections 3-5. Various tests used
to validate Themis features are presented in Section 6. A
handful of novel results enabled by Themis are collected in
Section 7. The computational performance of Themis and
its key components, including the implications for high-
performance computing (HPC) systems, is addressed in
Section 8. Finally, conclusions are summarized in Section
9.

2. Summary of Themis

2.1. Structure

The primary goal for Themis is to provide an extensi-
ble framework for unifying existing and developing future
analyses of EHT and auxiliary data. Thus, a key element
of Themis is the partitioning of the problem, defining
a set of independent components in an extensible fash-
ion, ensuring that each may be independently developed.
Thereby Themis may be continually and effectively devel-
oped by the EHT community. Importantly, the practical
bar to do so is substantially reduced, requiring would-be
developers to understand only the elements of the inter-
face. In the presence of a rapidly evolving data type and
modeling effort, this is critical to leveraging the substan-
tial preceding efforts.

Themis consists of three distinct collections of compo-
nents, each of which is designed to be interchangeable:

Data Structures: Management and standardization of
observational data throughout Themis. These fa-
cilitate the rapid introduction of new data prod-
ucts, expand the capability of existing data prod-
ucts, and define the objects for which predictions
are ultimately made.

Models: Any algorithm that produces a prediction for
some data object given a list of parameters. Models
may be physically motivated or purely phenomeno-
logical. They are directly tied to underlying data
structures via the declaration of those for which pre-
dictions can be made.

Likelihoods, Priors and Samplers: Likelihoods pro-
vide a method for directly comparing model and
data objects. Note that in many cases elements of
the underlying model may be subsumed into a like-
lihood (e.g., nuisance parameters that can be an-
alytically marginalized over). Priors and samplers

provide methods for efficiently exploring the model
parameter space, providing information about the
model parameters.

In practice, there is some overlap between component
classes (e.g., Likelihoods and Models), which may be im-
plemented in more than one way. Nevertheless, this has
proven sufficiently modular to enable rapid and significant
model development already.

All Themis-based analyses are structured in the follow-
ing way:

1. Generate the desired data objects, e.g., by reading
in existing data sets.

2. Create an appropriate model object, i.e., declare a
model capable of making predictions for the data
selected.

3. Specify prior probability distributions for each
model parameter.

4. Construct the relevant likelihood objects, combining
data sets as desired.

5. Execute a sampler, reporting sampler-specific pa-
rameter information (e.g., generate chains for
MCMC samplers).

In this way the execution of the analysis is conceptually
modularized, enabling variations in each stage to be made
trivially.

2.2. Implementation

The main function is kept concise and is the only el-
ement of Themis a user that is simply running Themis
needs to modify. The user may choose interchangeably dif-
ferent EHT data set(s), theoretical model(s), likelihoods,
priors, and samplers to employ. Conceptually, this func-
tion is organized in a fashion that closely follows the anal-
ysis pipeline listed at the end of the previous section to
improve usability.

Themis also allows users to add whole new functional-
ity, such as additional models, which can be included eas-
ily into a clear and well-established structure. An object-
oriented programming framework, along with inheritance,
permits a clear and concise definition of component inter-
faces. Examples of how these are propagated through var-
ious Themis components are explicitly illustrated in the
inheritance diagrams shown in Figures 1 and 2. Impor-
tantly, in the former, the various predictions enabled by a
particular model type (in this case, image-based models,
see Section 4.1); for more details see Section 4.

Themis is under version control provided by git with
a modern, state-of-the-art branching strategy including
master, development and feature branches. Users are en-
couraged to generate new code branches, develop and con-
tribute to the code in the form of a pull request that will
be reviewed by the Themis core development team.
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Figure 1. Inheritance diagram for the model image object within
Themis generated via Doxygen. These are models whose primary
output is a raster image. Note that a number of models that are
either analytically tractable, or extend beyond a single, raster image
are not shown. A full listing of Themis models can be found in the
Themis documentation.

A suite of tests is run regularly via a script in an effort to
identify bugs or regressions as early as possible. The script
performs these tests and sends a report to the Themis core
development team. These include short tests using EHT
data, and range all the way to less frequent and slower, to
full scale parameter estimation validation tests similar to
the ones presented in Section 6.

The code is written in C++ making it maximally
portable, and has been tested on a variety of systems.
Themis is designed with minimal dependency on exter-
nal libraries to avoid installation conflicts; currently, the
only required external libraries are FFTW (Frigo & Johnson
2005) and the Message Passing Interface (MPI)1. Up-to-
date documentation is critical in a rapid development
environment. To meet this challenge, Themis has inte-
grated documentation comments which may be optionally
rendered via Doxygen2 to produce a comprehensive, cross-
linked html and/or PDF document.

1 Information on the MPI 3.1 standard can be found at www.mpi-
forum.org.

2 Information on Doxygen features, directives, and on how to ob-
tain and install it, may be found at www.doxygen.org.

Figure 2. Inheritance diagram for the likelihood object within
Themis generated via Doxygen.

We now turn to describing each component collection
independently.

3. Themis Data Structures

Within Themis, observational data are collected in
type-specific data structures. Each has a singular data
element defined (a datum object) and an associated plu-
ral data structure (a data object) that provide additional
input/output facilities and element access functions. At a
minimum, these provide access to the values and their un-
certainties. Typically, they include a variety of additional
“accoutrements”, information necessary or useful in mod-
eling the data. Importantly, these accoutrements are both
data-type specific and extensible: information that only
becomes useful in subsequent observations or analyses can
be added without modifying the data-model interface. For
example, observed fluxes may initially include frequency
as an accoutrement and later expand to include time, ob-
servation facility, etc.

Organizing data this way within Themis permits both,
evolution in how data is employed in model comparisons,
and presents a simple way in which to include additional
types of data that are currently unforeseen. This is espe-
cially important given the wide variety of auxiliary data
that exists for EHT targets, most of which has yet to be
fully utilized. This has already been implemented for a
number of existing data types, including all for which EHT
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Table 1. Published EHT Data

Target Typeb Obs. Campaign Na Referencec

Yr Day(s)

Sgr A∗ F 1998-2006 11 Y04, M06

– VA 2007 100-101 19 D08

– VA 2009 95-97 51 F11

– CP 2009 93,96-97 24 F16

– CP 2011 88,90-91,94 31 F16

– CP 2012 81 25 F16

– CP 2013 80-82,85-86 101 F16

– VA 2013 80-82,85-86 128 J15

– LP 2013 80-82,85-86 662 J15

– VA 2013 80-82,85-86 861 L18

– CP 2013 80-82,85-86 267 L18

M87 VA 2009 95-97 104 D12

– VA 2012 81 56 A15

– CP 2012 81 17 A15

aNumber of data points, including detections only

bData types include visibility amplitudes (VA), closure phases

(CP), interferometric linear polarization fraction (LP), and

fluxes (F).

c Y04=Yuan et al. (2004) (taken from Falcke et al. 1998;

Zhao et al. 2003), M06=Marrone (2006), D08=Doeleman

et al. (2008), F11=Fish et al. (2011), F16=Fish et al.

(2016), J15=Johnson et al. (2015), L18=Lu et al. (2018),

D12=Doeleman et al. (2012), A15=Akiyama et al. (2015).

The dataset listed in bold are used for reproducing previous

results as part of the validation tests (see section 6.3).

data has already been reported (see Table 1). We summa-
rize each of these below.

3.1. Visibility Amplitudes

The primary product of VLBI observations are complex
visibilities, corresponding to the Fourier modes of the im-
age on the sky at spatial frequencies given by the projected
baseline presented by pairs of VLBI stations. Specifically,
in the absence of confounding effects, the complex visibil-
ity is given by

Vij =

∫
dαdβI(α, β)e−2πi(αu+βv) , (1)

where (u, v) is the two-dimensional projected baseline
length between the ith and jth stations expressed in units
of the observed wavelength, and I(α, β) is the spatial in-
tensity distribution at angular position (α, β) (for a com-

prehensive introduction to radio interferometry, see, e.g.,
Thompson et al. 2017)3.

In practice, these are modified by a variety of observa-
tional complications, chief among which are atmospheric
absorption and phase delays at individual stations, which
impact the amplitude and complex phase of Vij . Of these,
the latter are especially problematic, resulting in phase
shifts of the Vij by many times 2π, effectively randomizing
the phase on every baseline. As a result, often the magni-
tudes of the visibilities, |Vij |, are employed, which are sub-
ject only to a comparably modest uncertainty, 1%-20% de-
pending on station and atmospheric conditions (see, e.g.,
Johnson et al. 2015; Lu et al. 2018), albeit containing less
information on the structure of the image. The number of
visibility amplitudes generated by an interferometer grows
quadratically with the number of stations, N , scaling as
∝ N(N − 1)/2. Throughout an observing campaign, the
rotation of the Earth produces a large number of indepen-
dent measurements at different projected baselines.

Already a large number of EHT visibility amplitudes
have been published for the primary EHT targets, includ-
ing Sgr A∗ (Doeleman et al. 2008; Fish et al. 2011; Johnson
et al. 2015; Lu et al. 2018) and M87 (Doeleman et al. 2012;
Akiyama et al. 2015). We list these in Table 1.

3.2. Closure Phases

While atmospheric phase delays typically preclude the
reconstruction of the phase of the complex visibilities4, it
is possible, nevertheless, to obtain some information about
these phases via the closure phase,

Φijk = arg (VijVjkVki) , (2)

i.e., the sum of the phases of a triplet of visibilities mea-
sured on the baselines between some triplet of stations5.
Because the baselines “close”, i.e., (u, v)ij + (u, v)jk +
(u, v)ki = 0, all station-specific phase errors vanish iden-
tically, leaving a quantity that depends solely on the im-
age structure. Of particular importance, closure phases
are also insensitive to the image blurring induced by the
diffractive component of the interstellar scattering. Clo-
sure phases are not unique — for an array with N stations
only (N − 1)(N − 2)/2 are independent — a result that is
presaged by their independence of the phase delays.

Closure phases have been reported by the EHT for
Sgr A∗ for a number of years in Fish et al. (2011) and
Lu et al. (2018), and for M87 in Akiyama et al. (2015), as
summarized in Table 1.

3 Note that the default definition within the EHT following 2017
returns the complex conjugate of the complex visiblities, i.e., the
sign in the exponent of Equation (1) is positive. Within Themis,
this is corrected at the data input/output stage.

4 This is not true if a phase reference is used, typically an extra-
galactic background source (see, e.g., Broderick et al. (2011)), or if
multiple wavelengths are simultaneously observed, permitting one to
be phase referenced to the other (Middelberg et al. 2005).

5 This is the argument of the bispectrum.
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3.3. Closure Amplitudes

Station-specific amplitude calibration errors can also be
mitigated by combining visibilities measured on multiple
baselines. The closure amplitude is constructed from com-
binations of visibilities measured on four stations,

Vijkm =
|Vij ||Vkm|
|Vik||Vjm|

, (3)

and is insensitive to variations in the flux calibration and
phase delays. Again, closure amplitudes are also insensi-
tive to the image blurring induced by the diffractive com-
ponent of the interstellar scattering. As with the closure
phase, this comes at the price of uniqueness; there are only
N(N − 3)/2 independent closure amplitudes.

Closure amplitudes constructed from EHT data have
not yet been published, primarily due to the limited num-
ber of stations participating in early observations. How-
ever, recent observations have generated a number of triv-
ial closure amplitudes, i.e., amplitudes for which one base-
line is very short, as part of the calibration process (see,
e.g., Johnson et al. 2015). Beginning with the April, 2017
observations, many non-trivial closure amplitudes can be
anticipated.

3.4. Interferometric Polarization Fractions

The EHT observes in all four Stokes parameters,
(I,Q, U, V ). Independently, these can be used to con-
struct visibility amplitudes, closure phases, and closure
amplitudes. However, additional information may be ob-
tained by combining observations made in different Stokes
parameters. The interferometric polarization fraction,

m̆ij =

√
|V Qij |

2
+ |V Uij |

2

|Vij |
, (4)

where V Q,Uij are the visibilities associated with Stokes Q

and U , and Vij is the visibility defined in Equation (1), is
the extension of the familiar polarization fraction to the
individual Fourier modes of the image. m̆ is not to be
mistaken with the Fourier transform of the linear polar-
ization fraction as measured in the image domain. Unlike
the standard polarization fraction, m̆ij may be larger than
unity, and can exhibit counter-intuitive pathologies for
even simple source models (see the discussion surrounding
Figure S6 in the supplemental material in Johnson et al.
2015). Like closure amplitudes, the interferometric po-
larization fractions are insensitive to station-specific flux
calibration uncertainties and the diffractive component of
the interstellar scattering.

Interferometric polarization fractions have been re-
ported for Sgr A∗, are typically quite large and indicate
the presence of ordered horizon-scale polarization struc-
tures (Johnson et al. 2015). We summarize these in Table
1.

3.5. Flux Measurements

A key auxiliary set of observations are the spectral en-
ergy density distributions (SED) for primary EHT targets,
which typically place strong limits on the uncertain emit-
ting particle distributions. In addition, multi-wavelength
light curves are a key probe of the nature and origin of vari-
ability in the emission regions of the source. Both empir-
ical constraints are intrinsically encoded in measurements
of the unresolved source flux, Fν , effectively equivalent
to the visibility amplitudes measured at “zero-baseline”,
i.e. neighboring antennas. The distinction between these
arises in the accoutrements associated with the data, e.g.,
the origin of the observation, wavelength, time, etc.

Multiple sets of flux measurement data for Sgr A∗ and
M87 exist. For Sgr A∗, one set is summarized in Table 1.

4. Themis Models

Within Themis, a model is any algorithm capable of
generating a prediction for any Themis data type. Thus,
Themis models are closely aligned with Themis data
structures — for each data type there is a corresponding
base model type. Models can be based on multiple base
model types, i.e., are capable of generating predictions for
more than one type of data. This enables a broad, eas-
ily extensible, and backwards compatible framework for
defining models that permits the incrementally increasing
sophistication. Importantly, it provides a uniform inter-
face for both phenomenological models, which are designed
to make predictions for a handful of data types, and phys-
ically motivated models, which can simultaneously make
predictions for a wide variety of data types.

The manner in which predictions are made is not pre-
scribed. That is, where analytical expressions for the rele-
vant data type exist (e.g., visibilities from simple geomet-
ric models), models are capable of employing these. For
more complex models, numerical computations are often
required. In anticipation of numerically produced predic-
tions, Themis permits the passing of an accuracy param-
eter for each value that specifies the accuracy with which
these must be generated; typically setting this to 25% of
the measurement uncertainty is sufficient to generate ac-
curate parameter estimates (see Appendix A).

4.1. Image-based Models

Because the EHT directly probes the structure of
horizon-scale images, Themis contains an image-based
model type; how this depends on the underlying data-
based model types and some examples are shown in Fig-
ure 1. This provides a set of utilities for generating and
manipulating visibility-based data from models that pri-
marily generate images.

Because image generation is frequently computationally
intensive, the image-based model introduces an additional
position angle parameter, permitting the specific model
implementations to dispense with trivial image rotations,
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leading to a substantial potential reduction in the time
required to sample a broad range of parameters.

Once generated, images are padded with zeros by a fac-
tor of 8 by default to effect sinc-interpolation in the nu-
merically computed complex visibilities. The complex vis-
ibilities are computed on a two-dimensional grid of (u, v)
values via a two-dimensional Fast Fourier Transform us-
ing the FFTW library (Frigo & Johnson 2005). There are
no restrictions on the image dimensions, though it is ex-
pected that the image is computed on a rectilinear grid
with uniform pixel size; dimensions that factor into small
primes will be marginally faster.

Complex visibilities are then estimated at arbitrary
(u, v) via interpolation. By default Themis employs bicu-
bic interpolation, though a user may specify bicubic spline
interpolation if desired. From these, the closure phases are
constructed via Equation (2). While visibility magnitudes
may also be constructed from the interpolated complex
visibilities, it is considerably more accurate to interpolate
the visibility magnitudes directly.6 These are then used
directly or to compute closure amplitudes via Equation
(3).

4.2. Phenomenological Geometric Models

Within Themis, a number of phenomenological geomet-
ric models have been implemented. These are models for
which no underlying physical emission mechanism is iden-
tified for the origin of the image structures. However, such
models are capable of extracting signatures of geometric
features associated with underlying physical processes of
interest, e.g., black hole shadows. Currently implemented
phenomenological models include the following.

4.2.1. Symmetric Gaussian

Historically, the first shadow size estimates from mm-
VLBI observations of Sgr A∗ and M87 arose from fit-
ting symmetric Gaussians to visibility amplitude measure-
ments (Doeleman et al. 2008). Therefore, we have imple-
mented within Themis a model consisting of a single sym-
metric Gaussian component, characterized by a size, σ,
and an amplitude, V0. This makes predictions for visibil-
ity amplitudes, closure phases (trivially zero), and closure
amplitudes.

4.2.2. Asymmetric Gaussian

The introduction of asymmetry in mm-VLBI images was
initially characterized by an asymmetric Gaussian. Within
Themis we have implemented such a Gaussian model pa-
rameterized as in (Broderick et al. 2011), and character-

6 The magnitude of the gradient of the complex visibility and
visibility amplitude are related via |∇V |2 = (∇|V |)2 + |V |2(∇φ)2 ≥
(∇|V |)2, and thus the former is generally smaller than the latter. As
a result, the errors in interpolation at any order are typically smaller
when interpolating visibility amplitudes directly. Alternatively, this
permits considerably smaller image sizes when only amplitudes are
required.

ized by a size, σ, an asymmetry parameter, A, the ampli-
tude, V0, and the position angle, ξ.

4.2.3. Multiple Symmetric Gaussian

Themis also includes a model consisting of an arbitrary
number of symmetric Gaussian components, each charac-
terized by a size, σj , location, (xj , yj), and amplitude, Vj .

4.2.4. Crescent Model

Themis includes an implementation of the crescent
model described in Kamruddin & Dexter (2013), for which
the image is obtained by subtracting two non-concentric
discs, with the smaller disc lying completely inside the
larger one. The complex visibilities for this model can
be obtained analytically and are given by Equation (3) of
Kamruddin & Dexter (2013). As in Kamruddin & Dexter
(2013), we reparameterize this in terms of an amplitude,
V0, overall size, R, relative thickness, ψ, degree of symme-
try, τ , and the position angle, ξ. Both ψ and τ are defined
on the unit interval.

4.2.5. The “xringaus” model

Themis also contains an implementation of the nine-
parameter xringaus model proposed in (Benkevitch et al.
2016). This model was constructed in an effort to mimic a
more realistic black hole accretion image like the ones com-
monly obtained from physically motivated models. The
xringaus image is the combination of an eccentric slashed
ring and an elliptical Gaussian located in the brighter side
of the ring.

This model is then described by a tuple of nine param-
eters: the zero-spacing flux, V0, the external radius, Rex,
the internal radius, Rin, the distance between centers of
the circles, d, the “fading” parameter controlling the min-
imum brightness, the Gaussian axes sizes, a and b, the
fraction of the total flux in the Gaussian, gq, and the po-
sition angle, ξ. The complex visibilities for this model, in
terms of these parameters, can be also obtained analyti-
cally. The reader is referred to Section 2 of (Benkevitch
et al. 2016) for a more detailed description.

4.2.6. Visual Binary

Themis also features a model of two Radio emitting
Gaussian components in orbit around each other. The
model is characterized by a tuple of 13 parameters includ-
ing the total flux Fi, size σi, and spectral index αi of each
component, the total mass of the system M , the binary
mass ratio, q ≤ 1, the orbital separation, R, the source
distance d, the phase offset Φ0, the cosine of the inclina-
tion angle, cos(i) of the orbital angular momentum vector
and the position angle in the sky, ξ. This model includes
(and therefore also takes advantage of) relativistic effects
such as Doppler boost and relativistic aberration. It is
explicitly time-dependent while being fully analytic and
thus fast to evaluate.

This model is to be compared to long time scale moni-
toring campaigns of sources such as OJ 287 or other binary
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candidates. Details will be published in a separate paper
which focusses on this topic.

4.3. Interstellar Scattering Models

Interstellar scattering modifies the intrinsic images of
Sgr A∗ by both blurring the image (diffractive compo-
nent) and adding small scale structures associated with a
random realization of refractive modes that vary slowly
throughout the night (refractive component; see, e.g.,
Johnson & Gwinn 2015). These significantly modify visi-
bilities on long baselines, and must be included in analyses
of EHT observations of Sgr A∗.

When many realizations of the scattering screen are av-
eraged over, e.g., after many observing nights, i.e., when
the scattering may be treated in the ensemble average
limit, only the diffractive component is present. This ap-
pears as an image smoothing via convolution with a Gaus-
sian kernel whose parameters depend on the details of the
intervening scattering screen(s). Themis has implemented
two models for addressing interstellar scattering, both in
the ensemble average limit, which we list below. In both,
the impact of scattering is imposed directly on the visi-
bilities, for which the convolution in image space reduces
to a multiplicative factor. Within Themis, each are im-
plemented as a model that modifies an existing intrinsic
model, with the latter introducing additional parameters.
Hence, scattering provides an explicit example of how the
modular structure of Themis enables the rapid construc-
tion of new models.

While only a very simple set of scattering models are
implemented in Themis thus far, more complex models
are available in the literature. Physically motivated mod-
els that exhibit a smooth transition from a quadratic to a
general power law wavelength dependence for the size of
the scattering kernel may be found in Psaltis et al. (2018).
In these the wavelength at which the transition occurs is
determined by the underlying physical parameters of the
screen. Updated values of the scattering kernel size from
long-wavelength measurements within the context of these
models may be found in Johnson et al. (2018). Implement-
ing these updated models is left for future development.

4.3.1. Default Diffractive Screen

Multi-wavelength observations have produced a model
for the scattering kernel that is asymmetric and wave-
length dependent, consistent with that anticipated by
models of the scattering screen that invoke Kolomogorov
turbulence within a plasma sheet (Bower et al. 2006). The
associated semi-major and semi-minor axis sizes are given
by

σmaj = 9.39

(
λ

1.3 mm

)2

µas

σmin = 4.59

(
λ

1.3 mm

)2

µas,

(5)

and are oriented such that the major axis lies along the
position angle ξ = 78◦ East of North.

4.3.2. Parameterized Diffractive Screen

Recently, it has been shown that even for thin scat-
tering screens, the wavelength dependence of anisotropic
scattering screens may be substantially more complicated
(Psaltis et al. 2018). The main uncertainty is the inner-
scale of the turbulence within the screen, corresponding to
the dissipative scale within the sheet. For some plausible
values, the wavelength dependence could depart from that
found in (Bower et al. 2006) near 1.3 mm. As a result, a
second scattering model has been implemented in which
σmaj, σmin, and the position angle are all parameterized as
power laws of wavelength with unknown coefficients and
powers. That is,

σmaj = σA

(
λ

λp

)α
, σmin = σB

(
λ

λp

)β
,

and ξ = ξ0 + ξ1

[(
λ

λp

)γ
− 1

]
,

(6)

where the 7 parameters, σA, σB, ξ0, ξ1, α, β, and γ may
be varied. The pivot wavelength, λp, is set by the user.

4.4. Native Physical Models

The past two decades have seen the development of a
number of physically motivated models which employ ray
tracing and radiative transfer in black hole spacetimes.
These have two main components: the construction of
photon trajectories within the spacetime under consider-
ation, and the radiative transfer through some emitting
plasma distribution. Both elements are directly affected
by variations in the spacetime structure, with the emis-
sion also depending on a number of astrophysical consid-
erations.

While this class of models is substantially more compli-
cated than geometric models, their physical origin presents
a number of significant advantages. First, they are capa-
ble of making predictions for a wide range of observations,
making it possible to bring far more empirical data to
bear upon them. For example, they necessarily make si-
multaneous, self-consistent predictions for images, fluxes,
variability, and polarization features of the EHT and auxil-
iary data Broderick & Loeb (2006b); Bromley et al. (2001);
Huang et al. (2009); Pu et al. (2016a); Gold et al. (2017);
Dexter et al. (2009); Mościbrodzka et al. (2014); Chan
et al. (2015); Chael et al. (2018a). Hence, physical mod-
eling enables a concordance fitting effort that promises
far more power to constrain the nature of the emission
region Chan et al. (2015); Broderick et al. (2016); Gold
et al. (2017). Second, the spacetime structure impacts the
image in many ways beyond gravitational lensing. The
dynamics of the material in the emission region modi-
fies its optical depth, and therefore appearance Broder-
ick & Blandford (2003, 2004); Broderick & Loeb (2005,
2006a, 2009b); Dexter et al. (2009); Mościbrodzka et al.
(2009); Pu et al. (2016a); Mościbrodzka & Gammie (2018);
Gold et al. (2017); Chan et al. (2017); Jeter et al. (2018);
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Bronzwaer et al. (2018). Thus, in principle, modeling the
brightness distribution offers additional probes of gravity
(Broderick & Loeb 2006a; Johannsen 2013; Broderick et al.
2014; Johannsen et al. 2016; Mizuno et al. 2018). Third, it
provides direct information about the high-energy astro-
physical processes responsible for the growth of black holes
and the launching of jets Broderick & Loeb (2009b); Levin-
son & Rieger (2011); Broderick & Tchekhovskoy (2015);
Hirotani & Pu (2016); Dexter et al. (2009); Mościbrodzka
et al. (2014); Gold et al. (2017).

Within Themis, two general relativistic ray tracing and
radiative transfer packages are provided. The first of these
is the vacuum ray tracing and radiative transfer pack-
age VRT2 (Vacuum Ray Tracing and Radiative Transfer).
VRT2 is based on the plasma radiative transfer package
described in Broderick & Blandford (2003, 2004) and pro-
vides a modular framework for adding novel plasma dis-
tributions, radiative transfer mechanism, and spacetime
structures. It was the basis for the images generated in
e.g. Broderick et al. (2011) and used in the analysis of
Broderick et al. (2016). It also natively interfaces with
Themis, having been written in the same programming
language (C++), in a similar style. Models based on VRT2

within Themis include those listed below.
In addition, the vacuum ray tracing and radiative trans-

fer package Odyssey described in Pu et al. (2016b) has
also been incorporated within Themis. Based on the ray
tracing algorithm in Fuerst & Wu (2004) and the radiative
transfer formula presented in Younsi et al. (2012), Odyssey
can exploit graphics processing unit (GPU) cards to realize
substantial speed gains for models that employ it. It re-
quires the Compute Unified Device Architecture (CUDA)-
enabled GPU cards and the CUDA compiler nvcc. Again,
like Themis, Odyssey is implemented in C/C++ and CUDA
C/C++, making its integration straightforward.

4.4.1. SED-fitted RIAF

This is an image at a single wavelength associated with
the radiatively inefficient accretion flow (RIAF) models de-
scribed in Broderick & Loeb (2006b) and refined in (Brod-
erick et al. 2011). This model employs a tabulated set
of accretion flow parameters, obtained at different black
hole spins and inclinations, that reproduce the observed
SED of Sgr A∗. The model parameters are the dimen-
sionless spin magnitude, a (in the range [0,1]), the cosine
of the inclination, cos θ, ([−1,1]), and the position angle,
ξ ([−180◦,180◦], as part of a model image). The inten-
sity normalization may be included in via the likelihood
(see Section 5.1.6). An example image from the Themis-
integrated VRT2 package is shown in Figure 3.

4.4.2. Extended RIAF

This is an extension of the SED-fitted RIAF model that
permits a wide range of structural parameters in the RIAF
model to vary. This consists of two populations of syn-
chrotron emitting electrons, orbiting a Kerr black hole in
the presence of a toroidal magnetic field. Specifically, the

Figure 3. Image produced by the radiative transfer module VRT2

showing the resulting best-fit RIAF model after sampling the full pa-
rameter space. This reproduces the result in Broderick et al. (2016).
The X and Y axis show image coordinates in units of the gravita-
tional radius.

proper number density and temperature of a thermal pop-
ulation of electrons are given by

nth = ne,tr
ηte−z

2/2h2
tR

2

, Tth = Ter
τt , (7)

where z = r cos θ and R = r sinϑ where r is the standard
Boyer-Lindquist radius (measured in GM/c2) and ϑ is the
Boyer-Lindquist polar angle. Similarly, the proper number
density of the nonthermal electrons is given by

nnth = ne,ntr
ηnte−z

2/2h2
ntR

2

, (8)

and has a power-law distribution in microscopic Lorentz
factor above γmin with a power law corresponding to an
optically thin spectral index of α (i.e., 2α− 1). These are
emitting within a toroidal magnetic field with comoving
strength

B2

8π
= β−1mpc

2

6r
, (9)

and orbiting with a four-velocity outside of the innermost
stable circular orbit (ISCO) given by

uµ = ut(1, 0, 0, κ`K) (10)

where `K is the specific Keplerian angular momentum and
ut is determined by the standard normalization condition
on uµ; inside of the ISCO the material plunges on ballistic
orbits (Cunningham 1975). Thus, there are 15 parame-
ters: black hole spin, a, cosine of the black hole spin in-
clination, cos θ, black hole spin position angle, ξ; thermal
electron density normalization, ne,t, radial power-law, ηt,
and scale-height, ht, electron temperature normalization,
Te, and radial power law, τt; nonthermal electron density
normalization, ne,nt, radial power-law, ηnt, scale-height
hnt, minimum microscopic Lorentz factor, γmin, and spec-
tral index, α; plasma beta, β and sub-Keplerian fraction
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κ. Note that subsets of these may be held fixed or varied
simultaneously via the definition of a wrapper model.

4.4.3. Orbiting Hot Spots

Major dissipative events within the accretion flow, such
as magnetic reconnection events and shocks, can gener-
ate initially compact, orbiting, synchrotron emitting hot
spots. These may increase the emission of Sgr A∗ by
orders of magnitude before inducing any dynamical ef-
fects. Therefore, they may be roughly modeled as or-
biting, Gaussian non-thermal particle over-densities that
subsequently synchrotron emit in the radio and infrared,
restricted to the equatorial plane (Broderick & Loeb 2005,
2006a). To model the velocity profile of the spot we use a
two-parameter, (αr, κ) ∈ [0, 1], four-velocity given by

uµ = (ut, urαr
, 0, utΩκ). (11)

Here urαr
= urK + αr(u

r
ff − urK) and Ωκ = Ωff + κ(ΩK −

Ωff ), where K ,ff subscripts denote Keplerian and free fall

motion respectively, and Ωi = uφi /u
t
i (see also Pu et al.

2016a). Equation (11) is a two-parameter description of
the flow dynamics and can also be applied to the extended
RIAF model in section 4.4.2, thereby generalizing Equa-
tion (10). Thus, there are 10 parameters needed for this
model: black hole spin, a, cosine of the black hole spin
inclination cos θ, black hole spin position angle ξ; central
spot non-thermal electron density ne,spot, spot radial size
Rs; initial spot location in time, t0, radius, r0, and az-
imuthal angle φ0; the sub-Keplerian parameter κ, and the
radial infall parameter αr.

4.4.4. Shearing Hot Spots

In practice, hot spots will subsequently shear and cool.
Thus, Themis also includes a shearing hot spot model
Jeter et al. (2018), that incorporates the expansion of the
hot spots within a background accretion flow. The param-
eters of this model are identical to the orbiting spot model
above.

4.5. External Physical Models

There is no intrinsic bar to including additional ray trac-
ing and radiative transfer packages within Themis. Do-
ing so offers a number of benefits, including the ability to
rapidly generate new models within Themis itself, efficient
parallelization and improved portability. However, native
integration is not necessary. It is often initially faster,
and occasionally necessary, to externally include modeling
software. For Themis this has been done for a number of
existing packages:

GRTRANS: A publicly available general relativistic,
polarized radiative transfer code written in FOR-
TRAN, see Dexter (2016); Dexter et al. (2009).
GRTRANS and by extension also Themis is cou-
pled to the HARM3D GRMHD code Gammie et al.
(2003); McKinney et al. (2014); Dexter et al. (2009).

ASTRORAY: A significantly extended version of the
general relativistic polarized radiative transfer code
written in C/C++ based on Shcherbakov (2014) and
substantially extended in Gold et al. (2017). AS-
TRORAY and by extension Themis is coupled to
HARM3D (Gammie et al. 2003; McKinney et al.
2012, 2014).

iPOLE: A publicly available general relativistic, polar-
ized radiative transfer code Mościbrodzka & Gam-
mie (2018) based on the covariant formulation pre-
sented in Gammie & Leung (2012) and written in
standard C. iPOLE and by extension Themis are
coupled to HARM3D Gammie et al. (2003); Dolence
et al. (2009); Mościbrodzka et al. (2009).

RAPTOR: A publicly available general relativistic ra-
diative transfer code, see Bronzwaer et al. (2018)
written in standard C. RAPTOR and by extension
Themis is coupled to the BHAC Olivares et al.
(2018) GRMHD code, HARM3D Gammie et al.
(2003); Mościbrodzka et al. (2009) and is GPU ca-
pable.

BHOSS: A publicly available general relativistic radia-
tive transfer code Younsi (2019) written in Fortran
(95/2003), see also Fuerst & Wu (2004); Younsi et al.
(2012, 2016). BHOSS and by extension Themis
is coupled to the BHAC Olivares et al. (2018) and
HARM3D GRMHD code Gammie et al. (2003); Do-
lence et al. (2009); Mościbrodzka et al. (2009).

Note that many of these are directly coupled to a variety
of existing GRMHD simulation codes such as HARM3D
and BHAC. As of now, Themis has successfully interfaced,
in at least a limited form, with the vast majority of the
image generation tools employed by the EHT collabora-
tion.

5. Likelihoods, Priors and Samplers

Models and data are systematically compared via like-
lihoods, which express the probability that the data was
obtained from the model. These are then explored by sam-
plers, which explore the dependence of the likelihood on
the model parameters, incorporating any priors on the pa-
rameter values. Here we describe the various elements of
each as implemented in Themis.

5.1. Likelihoods

Within Themis likelihood is any method for taking a pa-
rameter vector, p, and construct a log-likelihood, L. When
this is generated using a Themis data object (consisting
of a number of individual values) and a Themis model ob-
ject the log-likelihood is the probability of obtaining the
data given the model. Likelihoods can be combined with
user-supplied weights, enabling the combination of vari-
ous data sets. However, when doing so it is assumed that
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the model parameters are unchanged, i.e., the same set of
model parameters are to be supplied to each likelihood be-
ing used. All likelihoods expect a matching data type and
model type, e.g., visibility amplitude data and a model
that generates visibility amplitude predictions.

The likelihood generally requires information about the
underlying error distribution of the data, which is typi-
cally provided via an error estimate. It is not required
within Themis to assume Gaussian errors, i.e., likelihood
classes that assume alternative error distributions (e.g.,
Rice distributions, etc.) are possible. In some instances
this flexibility is important, e.g., for quantities constructed
from quotients (closure amplitudes, Section 5.1.4, and in-
terferometric polarization fractions, Section 5.1.5). It is,
however, often convenient numerically to presume Gaus-
sian errors when permissible, enabling analytical simplifi-
cations that greatly improve the efficiency of Themis (Sec-
tions 5.1.6 and 5.1.7). Similarly, all currently implemented
likelihoods assume the data values are independent — this
too may be relaxed in principle. An obvious example of
both that is of considerable interest is the covariance in-
duced by the refractive modes in the scattering screen, the
implementation of which is left for future development.

Likelihoods also can incorporate model features. In
many instances, a subset of model parameters may be an-
alytically marginalized over, and in the process subsumed
into the likelihood itself. We have implemented a number
of examples of such “marginalized” likelihoods, i.e., like-
lihoods in which sets of nuisance parameters have been
treated analytically. It is natural to include key system-
atic uncertainties of the EHT, e.g., the structure of the
refractive scattering screen, in this fashion, though this is
left for future development.

The likelihoods currently implemented in Themis in-
clude the following.

5.1.1. Test Cases

To facilitate testing samplers, Themis includes two ar-
tificial likelihoods with given distributions. The first is a
multi-dimensional Gaussian, with user-specified mean and
size. The second, the Egg Box, is considerably more com-
plicated, producing a highly multimodal likelihood func-
tion in 5 dimensions:

L(p) =

[
2 +

5∏
i=0

cos(pi)

]5

. (12)

The number of peaks can be set by the range over which
the priors permit the parameters, p, to vary. This is typ-
ically used to assess the ability of a sampler to accurately
find widely separated, high-likelihood regions.

5.1.2. Visibility Amplitudes

Themis includes a log-likelihood that assumes Gaussian
errors for visibility amplitudes:

L(p) = −
∑
j

[
|V |j − |V̂ |j(p)

]2
2σ2

j

, (13)

where |V |j and σj are the observed visibility amplitudes

and their errors, and |V̂ |j(p) are the model visibility am-
plitudes given parameters p. Note that the true visibility
amplitude error distribution is given by the Rice distribu-
tion, and for low signal-to-noise ratio (SNR) is both bi-
ased and non-Gaussian (Thompson et al. 2017). However,
when data are selected such that SNR ≥ 2 and approx-

imately debiased via |V |j →
√
|V |2j − σ2

j , the visibility

amplitude error distribution is within 8% of an unbiased
Gaussian distribution at all |V |, reproduces the mode to
better than 1% and the 68% and 95% cumulative widths
to better than 6% (see Appendix B). Currently, the user is
expected to independently implement the debiasing proce-
dure in the generation of the data tables prior to reading
them in Themis.

5.1.3. Closure Phases

Similarly, Themis includes a log-likelihood that assumes
Gaussian errors for closure phases:

L(p) = −
∑
j

∆2(Φj − Φ̂j(p))

2σ2
j

, (14)

where Φj and σj are the observed closure phases and their

errors, Φ̂j(p) is the model closure phase given parame-
ters p, and ∆(x) is the angular difference in the range
[−180◦, 180◦). This is similar to, but distinct from the
visibility amplitudes likelihood in that the difference se-
lects the branch that minimizes the angular difference. In
the limit of small σj , this is identical to the circular dis-
persion in Medeiros et al. (2017) and the circular statistics
in Chael et al. (2018b); at large σj all of these approxima-
tions differ, though in this limit the closure phases become
uninformative. We adopt this simpler prescription as it fa-
cilitates addressing scattering-induced closure phase fluc-
tuations later.

5.1.4. Closure Amplitudes

Closure amplitudes provide an example of a non-
Gaussian likelihood within Themis. Because closure
amplitudes are constructed via taking ratios of visibil-
ity amplitudes, the likelihood of a single value exhibits
a significant asymmetry and extended tail towards large
values, characteristic of quotient distributions (see Ap-
pendix B). For SNR≥ 4, this is well approximated by a
Gaussian quotient distribution7, given in Equation (B24).

7 In Appendix B we note the appropriate log-Normal distribution
is a significantly worse approximation, and biases image features
reconstructed from data with moderate SNR values (4 < SNR . 18).
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In principle, this can make use of ancillary information
in the form of station system equivalent flux densities
(SEFDs), though this is left for future development. Thus,
at present, we assume that the parameter ρ, defined in
Equation (B21), is fixed to unity, for which the Gaussian
quotient approximation is accurate at all V to better than
13% for SNR≥ 4. The associated log-likelihood is

L(p) = −
∑
j

{
(Vj − V̂j)2

2Σ2
j

− log

(
Σj
σj

)

+ log

[
∆jerf

(
∆j√
2Ωj

)
− 2Ωj√

2π
e−∆2

j/2Ω2
j

]}
,

where Σ2
j = σ2

j

1 + V2
j

1 + V̂2
j

, ∆j =
1 + VjV̂j
1 + V2

j

,

and Ω2
j =

σ2
j

(1 + V2
j )(1 + V̂2

j )
,

(15)

where the Vj and σj are the observed closure amplitudes,

the V̂j(p) are the model visibility amplitudes given pa-
rameters p (with the functional dependence suppressed
for clarity), and erf(x) is the error function. This differs
from Equation (B24) by constant normalization factors.

In the limit of σj/V̂j → 0 the third term vanishes. How-
ever, for Vj of order unity, Equation (15) does not reduce
to a Gaussian distribution in any SNR limit.

Finally, we note that this approximation is significantly
better when V̂j is small. Generally, the closure amplitudes
can be constructed such that Vj < 1, approximating this
requirement. Currently, the user is expected to indepen-
dently define the set of closure amplitudes such that this
is true prior to reading them into Themis.

5.1.5. Interferometric Polarization Fractions

The interferometric polarization fraction provides a sec-
ond example of a non-Gaussian likelihood available in
Themis. As with the closure amplitude, the source of
the non-Gaussianity is the presence of the ratio in their
definition. This leads to an asymmetric likelihood with an
extended tail towards large m̆ that is also well approxi-
mated by a Gaussian quotient distribution for SNR≥ 2,
given in Equation (B17). That m̆ is defined by the ra-
tio of visibilities constructed simultaneously on the same
baseline places an additional constraint on the likelihood,
permitting it to accurately be described by a single noise
parameter (Appendix B): for SNR≥ 2, the Gaussian quo-
tient distribution is accurate at all m̆ to 13% for SNR=2
and 6% for SNR≥ 4. The associated log-likelihood is iden-

tical in form to Equation (15):

L(p) = −
∑
j

{
(m̆j − ˆ̆mj)

2

2Σ2
j

− log

(
Σj
σj

)

+ log

[
∆jerf

(
∆j√
2Ωj

)
− 2Ωj√

2π
e−∆2

j/2Ω2
j

]}
,

where Σ2
j = σ2

j

1 + m̆2
j

1 + ˆ̆m2
j

, ∆j =
1 + m̆j

ˆ̆mj

1 + m̆2
j

,

and Ω2
j =

σ2
j

(1 + m̆2
j )(1 + ˆ̆m2

j )
,

(16)

were m̆j and σj are the observed polarization fraction and

its uncertainty, ˆ̆mj(p) are the model polarization fractions
associated with parameters p (with the functional depen-
dence suppressed for clarity). This differs from Equation
(B17) by constant normalization factors. As with the clo-
sure amplitudes, this is non-Gaussian even in the limit of
σj/m̆j → 0.

5.1.6. Norm-Marginalized Visibility Amplitudes

Variations in the total source flux can be directly incor-
porated into the likelihood. Assuming Gaussian errors for
visibility amplitudes, it is possible to introduce and ana-
lytically marginalize over an over-all normalization, V00,
presuming a flat prior (Broderick et al. 2014). This pro-
vides both the maximum log-likelihood:

Lmax = −

(∑
j V

2
j /σ

2
j

)(∑
j V̂

2
j /σ

2
j

)
−
(∑

j Vj V̂j/σ
2
j

)2

2
∑
j V̂

2
j /σ

2
j

,

(17)
which may be identified with the minimum χ2, occurring
at some text.

V00,max =

∑
j Vj V̂j/σ

2
j∑

j V̂
2
j /σ

2
j

. (18)

More relevant for sampling is the marginalized log-
likelihood:

L̄ = Lmax +
1

2
log

(
2πV 2

00,max∑
j V̂

2
j /σ

2
j

)
(19)

with the corresponding marginalized normalization,
V00,marg = V00,max.

By breaking the visibility amplitude data into epochs
with similar visibility normalizations, corresponding, e.g.,
to a variable accretion rate, this can substantially increase
the efficiency of sampling the remaining parameter space.

5.1.7. Shift-Marginalized Closure Phases

At lowest order, refractive scattering induces shifts in
the closure phase. These, again, may be incorporated
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into an appropriately constructed likelihood. Assuming
Gaussian errors for closure phases, it is possible to ana-
lytically marginalize over an over-all shift, φ, presuming a
user-supplied Gaussian prior (Broderick et al. 2016). This
provides both the maximum log-likelihood

Lmax = −φ
2
max

2Σ2
−
∑
j

∆2(Φj − Φ̂j)

2σ2
j

, (20)

where the most likely phase offset is,

φmax = Σ2
∑
j

∆(Φj − Φ̂j)

σ2
j

where
1

Σ2
≡
∑
j

1

σ2
j

, (21)

and again ∆(x) is taken on [−180◦, 180◦), minimizing the
magnitude of the angular difference. The maximum log-
likelihood is trivially related to the χ2 and is relevant for
fit quality assessment. More relevant for parameter esti-
mation is the marginalized likelihood, for which the log-
likelihood is given by

L̄ = Lmax −
φ2

max

2(σ2
Φ + Σ2)

+ log

(
Σ√

σ2
Φ + Σ2

)
, (22)

with an associated marginalized value of the closure phase
shift of

φ̄ =
σ2

Φ

σ2
Φ + Σ2

φM . (23)

Here σΦ is the width of the Gaussian prior on φ; it is in-
dicative of the amplitude of the refraction or turbulence
responsible for the inter-epoch closure phase fluctuations.
This marginalized log-likelihood is appropriate for sam-
pling the remaining parameters. By breaking the closure
phase data into epochs with similar visibility normaliza-
tions, corresponding, e.g., to a variable accretion rate, this
can substantially increase the efficiency of sampling the re-
maining parameter space.

5.1.8. Gain-Marginalized Visibility Amplitude

Station gains present a dominant source of systematic
error in the construction of visibility amplitudes. Typ-
ically, it is possible to calibrate these to 10-20% (Event
Horizon Telescope Collaboration et al. 2019c); in in-
stances where redundant atennas exist, network calibra-
tion schemes can reduce this to .1%. Occasionally, much
larger gain variations are possible. In either case, these
systematic errors overwhelmingly dominate the remain-
ing, random components, e.g., the thermal noise. Access-
ing the full sensitivity of the EHT via visibility amplitude
comparisons requires an efficient method of addressing the
reconstruction and marginalization over these uncertain
gains.

This reconstruction is facilitated by the correlations in-
duced among visibilities induced by the repeated appear-
ance of the gain factors: in a scan involving N stations at

most N gains must be reconstructed along the underly-
ing model from N(N − 1)/2 visibility amplitude measure-
ments. It is complicated by the time-variable nature of the
gains, which can vary significantly from scan to scan, i.e.,
on timescales of tens of minutes, and thus introduces many
additional parameters to be modeled. Within Themis this
is addressed by directly marginalizing over the gains at the
level of likelihood construction.

We assume that the gain at each station are well
modeled by a set of constant corrections for each gain-
reconstruction epochs. That is, for some set of {tk} for
t ∈ [tk, tk+1) the gain-corrected model visibility ampli-
tudes obtained from stations A and B are∣∣∣V̂ ∣∣∣

AB,j
(gA,k, gB,k; p) = (1+gA,k)(1+gB,k)

∣∣V̄ ∣∣ (uAB,j ; p),

(24)
where V̄ (u; p) are the model amplitudes in the absence of
gain corrections gA,k and gB,k, and the baselines uAB,j
comprise those baselines connecting A to B for which
measurements were made within the specified time frame.
For each k, we reconstruct all of the gain corrections
independently, subject to Gaussian priors on the gk =
(gA,k, gB,k, . . . ) with variance Σ2

g,A, Σ2
g,B , . . . . This is done

in two steps:

1. By numerically maximizing the log-likelihood in
Equation (13) at fixed p supplemented by Gaussian
priors for the coupled set of gk to obtain ḡk. This is
necessarily peaked, unimodal, and a modest multi-
dimensional optimization problem for the numbers
of antennas relevant for the EHT. We do this us-
ing a modified Levenberg-Marquardt algorithm that
includes the priors (see Appendix C).

2. An approximate marginalization over all gk is per-
formed by assuming that near ḡk the log-likelihood
is nearly quadratic, and thus the contribution to the
log-likelihood from t ∈ [tk, tk+1) is

Lk(p) ≈ −
∑
j

[
|V |j −

∣∣∣V̂ ∣∣∣
j

(ḡk; p)

]2

2σ2
j

− 1

2
ḡk ·C · ḡk −

1

2
log ||C||, (25)

where C is the covariance of the prior-adjusted log-
likelihood from the first step and ||C|| is its deter-
minant.

The final log-likelihood is obtained by combining those
over all gain-reconstruction epochs: L(p) =

∑
k Lk(p).

The number of additional effective parameters intro-
duced can be very large and depends on the particulars of
the stations contributing during each gain-reconstruction
epoch. Within each reconstruction epoch, the number of
additional parameters in the minimum of the number of
baselines and the number of stations participating. When
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all stations participate in Ng gain-reconstruction epochs,
the number of additional model parameters is N × Ng,
which for a typical EHT observation in 2017 can be of
order 102 for a single band. By ignoring potential corre-
lations between gain-reconstruction epochs, we reduce the
dimension of the additional parameter space by a large
factor. By sampling the log-likelihood after marginaliza-
tion over the {gk}, we efficiently restrict the dimension of
the parameter space that must be sampled, e.g., by the
techniques described in Section 5.3, to that of the original
model.

We present validation tests in Section 6.2.2 and Event
Horizon Telescope Collaboration et al. (2019f).

5.2. Priors

Themis provides a number of potential priors for indi-
vidual parameters. These may be imposed in two distinct
ways: as “priors” that modify the likelihood and “trans-
forms” that modify the parameter values. Within Themis,
“priors” add a term associated with a given prior distri-
bution. These are trivially implemented and easy to un-
derstand. However, they can be inefficient, assuming that
the sampler will efficiently incorporate the modified like-
lihood. In contrast, “transforms” impose priors indirectly
by mapping the variable being sampled into the desired
prior via a coordinate transformation. These are more
complicated to implement, typically requiring the integra-
tion of the desired prior probability distribution. However,
they are optimally efficient, permitting the sampler to ap-
ply a more natural distribution. Note that “transforms”
may be implemented intrinsically within models by choos-
ing a convenient set of parameters.

Likelihood evaluation is short-circuited on the evalua-
tion of priors, i.e., where the prior has zero probability
(e.g., outside the limits of a linear range), the likelihood is
not evaluated but rather returns the appropriate vanish-
ing value. This achieves two goals: first, Themis is made
marginally more efficient by avoiding unnecessary com-
putation, and second, permits priors to be used to avoid
unphysical parameter combinations, where models may re-
turn nonsensical results, e.g., negative densities passed to
a radiative transfer code or black hole spin outside the
range permitted by General Relativity.

Currently, Themis has only implemented priors and
transforms of a single variable. This is sufficient for most
situations. However, there are situations which may ben-
efit from priors that depend on many parameters, e.g.,
enforcing an ordering among the intensities of multiple
Gaussian components, thereby eliminating the trivial de-
generacy associated with swapping components. Never-
theless, there is no reason that such a prior cannot be
implemented within Themis.

Implemented priors include:

• None: a flat prior without boundary.

• Linear: a flat prior given two bounding values.

• Logarithmic: a logarithmic prior given two bound-
ing values.

• Gaussian a Gaussian prior given a mean and stan-
dard deviation.

And implemented transforms include:

• None: no transformation (default).

• Fixed: returns a single, user-defined value.

• Logarithmic: effectively imposes a logarithmic
prior.

5.3. Samplers

The process of sampling is conceptually separated from
the definitions of data and models through the standard-
ization of the likelihood objects. Thus, within Themis, a
sampler is any method for exploring the values of a like-
lihood for various choices of the parameter vector. There
is no standard output or input for a sampler, which may
even vary qualitatively depending on the goal of the sam-
pling process. However, all samplers interface with data
and model objects solely through the use of likelihood ob-
jects, and thereby permit analyses of a wide variety of
combinations of data and models. Implemented samplers
include the following.

5.3.1. Grid Search

The conceptually simplest but least efficient is a simple
grid search where the parameter space is probed in pre-
determined fixed steps in each dimension. While limited
in computational efficiency this scheme is often used to
cross-check results obtained by other samplers for smaller
parameter spaces that both schemes can handle.

5.3.2. Parallel-Tempered, Affine-Invariant Markov Chain

Monte Carlo

The natural choice for high dimensional models is to
use MCMC. Having scalability in mind we chose to imple-
ment ensemble sampling methods in which many MCMC
chains sample the parameter space in parallel. The chains
interact and use the information from their spatial dis-
tribution to effectively adjust their next jump proposals.
This has the added benefit of being able to sample the
unknown likelihood surfaces efficiently and with minimal
user input. We have implemented two different ensem-
ble sampling methods, namely, an affine-invariant method
and a differential evolution method; the latter in the next
subsection.

The affine-invariant method can sample likelihood func-
tions that are related by affine transformations with the
same efficiency (Goodman & Weare 2010). This means
it is very efficient in sampling highly stretched likelihood
distributions as long as the nonlinear correlations among
parameters are sufficiently weak.
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MCMC algorithms are generally not very efficient on
highly multimodal distributions. In order to overcome
this problem we have implemented parallel tempering for
each MCMC sampler. Parallel tempering makes copies
of the log-likelihood (L) function that are made smoother
through the introduction of a temperature parameter, the
higher the temperature the smoother the likelihood sur-
face:

Li ∝
L
Ti

(26)

The different temperatures are chosen from a temperature
ladder such that 1 ≤ Ti ≤ Tmax. Then we run a copy of
our MCMC sampler for each tempered likelihood copy in
parallel. The highest temperature chains can freely move
in the parameter space, while the low temperature chains
can be trapped in local likelihood maxima. By allowing
the different temperature chains to exchange their posi-
tions with some prescription we let the low temperature
chains to get out of the local maxima and explore the en-
tire parameter space. In the end the lowest temperature
chain, which samples the original untempered likelihood,
yields the posterior probability distribution.

In order to get an efficient parallel tempering algorithm
the temperature ladder has to be chosen carefully. There
are two main factors to consider. First, The highest tem-
perature used should be large enough to let the chains
move freely within the likelihood surface. Furthermore
the temperatures should not be too widely spaced as that
could hinder efficient swaps between chains from adjacent
temperatures and lead to inefficient tempering. The choice
of an efficient temperature ladder depends on the likeli-
hood surface and could be difficult to guess. To mitigate
this problem we have implemented a method to adaptively
change the temperatures in order to get near optimal effi-
ciency. Our method follows that of (Vousden et al. 2016).

We have implemented parallelism in different levels of
the MCMC sampler. Tempering is parallelized, MCMC
chains at each tempering level run in parallel and the like-
lihood can itself use multiple threads to run. This allows
for the effective use of large high performance computing
machines.

It is a well-known feature of MCMC schemes that there
is an initial so-called “burn-in” phase when the sampling
exhibits comparatively large changes in parameter predic-
tions, followed by a phase where the walkers settle down
to smaller and more consistent changes, before ultimately
converging to a final answer. As is customary in this ap-
proach, we exclude a certain number of MCMC steps cor-
responding to the “burn-in” process at the beginning of
the “chains”, i.e. the history of an MCMC walker.

5.3.3. Parallel-Tempered, Differential-Evolution Markov

Chain Monte Carlo

The second MCMC algorithm implemented in Themis
is the parallel-tempered, differential-evolution algorithm
Braak (2006). The differential evolution method adjusts

the collective move of its chains in a way to achieve op-
timal acceptance rate during Monte Carlo steps. It has
the added benefit of being able to jump between modes in
multimodal problems even without any tempering, thus
representing a better option for multimodal distributions.
Our implementation follows that of (Nelson et al. (2014))
and it also makes use of the same parallel-tempering algo-
rithm as the affine invariant method.

5.3.4. Bayesian Evidence

The MCMC sampling described above provides the pos-
terior probability distribution on parameters within the
context of a given model. This allows us to calculate ex-
pectation values for any quantity of interest and to assess
the goodness of fit for a given model to the data. However,
if we need to compare the plausibility of different models
given the same data set, running conventional MCMC is
not enough.

There are different ways of performing the model com-
parison, this includes the reversible jump MCMC, calcu-
lating the Bayesian evidence (via thermodynamic integra-
tion, nested sampling or Laplace approximation), and in-
formation criteria (Knuth et al. 2015).

In Bayesian probability theory the relative probability
of two models given the same data set is related to the
ratio of the Bayesian evidences for the two models which
is known as the Bayes factor or the odds ratio. The relative
posterior probability of the two models can be written as:

P (M1|D)

P (M2|D)
=
P (D|M1)

P (D|M2)

P (M1)

P (M2)
(27)

In this equation M1 and M2 are the two models we wish
to compare and D represents the data used to make the
comparison. P (D|M1) and P (D|M2) are the Bayesian ev-
idence for the two models. One can often assume that the
prior probability of the two models, P (M1) and P (M2),
are equal, and hence the ratio of the Bayesian evidence or
the Bayes factor is all one needs to calculate.

Themis implements the thermodynamics integration
method to calculate the Bayesian evidence (Lartillot &
Philippe 2006). In order to do this many MCMC chains
are run in parallel on tempered versions of the likelihood.
The temperature ladder for this purpose is provided by
the user. Given the posterior distributions and the values
of the likelihood at these points, the Bayesian evidence
(Z) is obtained from

lnZ =

∫ 1

0

Eβ(L)dβ, (28)

Where L is the log-likelihood, β = 1/T , and Eβ(L) is the
expectation value of the log-likelihood calculated using the
posterior probability distribution of chains at a tempered
level corresponding to T = 1/β.

6. Validation Tests
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We now turn to validating Themis. For this we focus
on the sampling methods, for which the implementations
are novel, and reproducing prior analyses of EHT observa-
tions of Sgr A∗. The variety in algorithmic improvements
present in Themis result in a considerable speed-up and
simplicity in implementation in comparison to the previ-
ous work to which we compare — often analyses that took
many months are now executed in days. Moreover, all of
these tests have been integrated into Themis, both as val-
idation tools and tutorials for future users.

6.1. Validation of the samplers

Here we test the sampling part of the code thoroughly.
In particular, we demonstrate the ability of the affine sam-
pler to reliably probe non-trivial parameter spaces. That
is, we anticipate that the complex models ultimately of
most interest in the context of EHT analyses will produce
multimodal probability distributions in high-dimensional
parameter spaces. It will be necessary, therefore, to con-
sistently identify all of the high-likelihood islands and de-
termine accurately their relative posterior probabilities.

6.1.1. Two dimensional Gaussian likelihood

If our model has a small number of parameters the grid
search sampler can be efficient in sampling the parameter
space. In this test the grid search sampler was used to
sample a two dimensional symmetric Gaussian likelihood.
Figure 4 shows the log likelihood recovered using the grid
search sampler as well as the marginalized posterior dis-
tributions for the same likelihood sampled using MCMC
methods.

6.1.2. Egg box test

In this test a 5 dimensional parameter space with a
highly multimodal egg box like distribution is sampled.
The likelihood is described in Section 5.1.1 and contains
55 = 3125 sharp peaks within the prior range: pi ∈ [−8, 8]
for all i.

This presents a significant challenge to most sampling
schemes. The narrowness of the peaks and the dimension-
ality of the parameter space precludes a grid search, which
would require more than 3× 1012 samples to robustly de-
tect all of them. The large dynamic range in the likelihood,
i.e., the very low likelihoods between peaks, precludes typi-
cal MCMC schemes, which are unable to efficiently explore
the full parameter space. Therefore, it provides a strong
test of the ability of the parallel tempered, affine-invariant
and differential-evolution parallel MCMC samplers to ef-
ficiently find and reconstruct the various high-likelihood
regions. As seen in Figure 5, both capture all of the fea-
tures of the Egg Box likelihood. This run was executed
employing the differential evolution sampler with 5 tem-
pering levels and took only 1 min on a typical laptop.
There were 100 walkers running for 8000 steps and the
burn-in period was less than 1000 steps.

Figure 4. Two dimensional Gaussian likelihood sampled by the
affine invariant MCMC sampler (blue), the differential evolution
MCMC sampler (red) and the grid search sampler (black).
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Figure 5. Validation of the sampler with a five dimensional
“eggbox”-likelihood test with the five artificial parameters x0, x1,
x2, x3, and x4. All peaks in the likelihood surface are successfully
recovered.

6.1.3. 16-Gaussian test

Here we show that the sampling scheme can correctly
probe a two dimensional parameter space with a likelihood
consisting of 16 Gaussians, and accurately reconstruct the
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Figure 6. Validation of the sampler with a two dimensional test
involving a 16-Gaussians-likelihood and two artificial parameters x0

and x1. Note that the sampler not only probes the likelihood surfaces
comprehensively, but it also correctly retrieves the Gaussian with the
higher likelihood at x0 = 20, x1 = 10.

relative posterior probabilities of different peaks. To do
this, the likelihood of the Gaussian located at (x0, x1) =
(20, 10), is chosen to be nine times higher than the others.
This test was run using the affine invariant sampler with
4 tempering levels. The number of MCMC steps in this
case was 4000 steps and the sampler used 100 walkers.

As shown in Figure 6, the sampler finds all of the
Gaussian components. In addition, it recovers the non-
uniformity of the likelihood surface, accurately recon-
structing the posterior weight of the appropriate compo-
nent. Figure 7 shows the relative probability mass cor-
rectly recovered for these 16 gaussian peaks.

6.2. Self-tests with simulated data

Here, we demonstrate the ability of Themis to accu-
rately reconstruct model parameters. This presents a si-
multaneous test of many of the components of Themis, in-
cluding the data structures, models, likelihoods, and sam-
plers. We generate simulated images using Themis’ native
model classes, from which the appropriate simulated data
is constructed. Thermal noise is then included, producing
a data set similar in character to that associated with a
single night of the 2017 EHT campaign. The simulated
data is then analyzed with Themis using the correspond-
ing model. Note that this does not address model discrimi-
nation. For this purpose, we considered three models: the
symmetric gaussian and the geometric crescent models,
for which visibilities can be computed analytically, and
the SED-fitted RIAF model, which incorporates the ray-
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Figure 7. Relative posterior probability mass for the 16 gaussian
peaks recovered via MCMC sampling, in good agreement with the
true values (red lines).

tracing components of VRT2 and numerical data genera-
tion of Themis.

6.2.1. Gaussian Model

We generated simulated closure amplitude data from
a compact, symmetric Gaussian with V0 = 2.5 Jy and
σ = 5 µas. We adopted a Gaussian for simplicity. The
very compact size was selected to ensure high SNR de-
tections on even the longest baselines of the 2017 EHT
campaign; such high SNRs are typical of more complex
models. We analyze this data with Themis’ symmetric
Gaussian model (Section 4.2.1) to assess potential biases
associated with the non-Gaussian nature of the closure
amplitude error distribution. We imposed an SNR mini-
mum on the simulated closure amplitude of 4.

For this analysis we used the closure amplitude likeli-
hood described in Section 5.1.4. We sampled the posterior
distribution with the parallel-tempered affine-invariant
MCMC sampler, adopting linear priors on each model pa-
rameter. The analysis converged using 5 tempering levels
with 128 walkers communicating every 50 MCMC steps,
and taking 100 samples per walker.

As expected, the total intensity is not constrained by
closure amplitudes, recovering our prior distribution. The
resulting posterior distribution for the size of the Gaus-
sian is shown in Figure 8. The reconstructed size is
σ = 5.0004 ± 0.0004 µas8, consistent with the input
value. Repeating the analysis with different realizations
of the simulated data produces qualitatively similar re-
sults, though they do exhibit 2σ fluctuations marginally
more often than anticipated. No experiment produced a
deviation larger than 3σ. As a result, we conclude that
the likelihood in Equation (15) does not fully eliminate

8 Note that for all of our analysis we report the marginalized
values for the parameters of each model instead of the maximum
values, which for complicated likelihood distributions may differ sig-
nificantly.
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Figure 8. Posterior distribution of the size of the symmetric
Gaussian reconstructed from simulated closure amplitude data with
σ0 = 5 µas. The expected value is indicated by the vertical blue
line.

the bias inherent in the closure amplitude error distribu-
tion, though does so at the 2σ level. Decreasing the SNR
minimum increases this bias substantially, suggesting that
additional development is required to fully exploit low-
SNR data.

While the closure amplitude likelihood in Equation (15)
is not Gaussian, and thus does not admit a well-defined χ2,
we do construct an approximate expression via χ2 = −2L.
In the limit of small closure amplitudes, this identification
is well-motivated. The associated reduced-χ2 is 0.97 with
1656 degrees of freedom, suggesting that this statistic will
be informative of fit quality.

6.2.2. Gaussian Model with Gain Errors

We generated simulated visibility amplitude data from
a compact, symmetric Gaussian with V0 = 2 Jy and
σ = 15 µas that incorporated known gain errors. The
SNRs, observing schedule and baseline coverage approx-
imate those associated with the April 2017 observations
of M879. Multiple types of gain errors were considered.
Following the properties of the recent M87 observations
we permit potentially large errors on the LMT gains and
modest errors on the remaining stations (Event Horizon
Telescope Collaboration et al. 2019c). This presents a
pathological situation, with one station considerably more
poorly characterized.

The analysis employed the parallel-tempered differential-
evolution MCMC sampler, adopting linear priors on both.
We adopt Gaussian priors on the reconstructed gain er-
rors, with Σg = 0.2 for all stations with the exception of

9 Stations included are the SMA (SM), Pico Valeta (PV), LMT
(LM), JCMT (JC), ARO-SMT (AZ), APEX (AP), and ALMA (AA).
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Figure 9. Reconstructed gains from simulated visibility amplitude
data associated with a symmetric Gaussian with σ0 = 15 µas in the
absence and presence of gain errors (top and bottom, respectively).
Different stations are offset for clarity; for each station, the line of
vanishing gain corrections is indicated by the horizontal dotted lines
of the same color. Input gain corrections are shown by the open
circles, recovered gain corrections are shown by the filled dots with
horizontal bars, which indicate the time range over which the gains
are assumed to be fixed.

the LMT, for which Σg = 1.0. The analysis used 8 tem-
pering levels, 128 walkers communicating every 50 MCMC
steps, and converged rapidly.

The reconstructed gains for the best fit are shown in Fig-
ure 9 when the true gain errors vanish and when they are
nonzero and vary throughout the night. In both cases, the
same realization of the observational errors was employed.
Modest fluctuations within the assumed gain reconstruc-
tion priors driven by the thermal errors are present. This
is clear from the analysis in which no gain errors were
introduced. Patterns in the reconstructed gains persist
across points within the MCMC chain and across different
input gain-error realizations, indicating that they result
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Figure 10. Posterior distribution of the size and amplitude of a
symmetric Gaussian reconstructed from simulated visiblity ampli-
tude data with σ0 = 15 µas without (red) and with (blue and black)
station gain reconstruction. These include the posteriors from sim-
ulated data without gain errors (red and blue) and with significant
imposed gain errors (black).

from the over-determined nature of the gain reconstruc-
tion problem (see Section 5.1.8). Nevertheless, the recon-
structions faithfully follow the introduced gain errors for
all stations. This is most apparent for the LMT, which,
by design, has the largest errors.

The process of reconstructing the gains does signifi-
cantly expand the posteriors of model parameters. This is
clear in Figure 10, in which the red contours indicate the
posterior without gain reconstruction. This is expected:
the additional freedom associated with the gain correc-
tions can marginally correct for larger deviations from the
true model. Nevertheless, the true model parameters are
well within the posteriors generally. This is shown explic-
itly in Figure 10 for both cases shown in Figure 9.

6.2.3. Crescent Model

We generated simulated visibility amplitude and closure
phase data from a diffractively-scattered crescent image
with V0 = 2.24 Jy, R = 28 µas, ψ = 0.14, τ = 0.07,
and ξ = 0◦, and added thermal noise to it. We then
analyze this data with Themis’ crescent model (Section
4.2.4), demonstrating that Themis properly recovers the
parameters of the original image.

For the analysis we used the standard visibility ampli-
tude and closure phase likelihoods described in Sections
5.1.2 and 5.1.3, and modeled the effects of diffractive scat-
tering with the default scattering model implemented in
Themis, and described in Section 4.3.1.
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Figure 11. Joint parameter distributions from the crescent model
analysis of the simulated visibility amplitude and closure phase data
generated from a crescent image with V0 = 2.24 Jy, R = 28 µas,
ψ = 0.07, τ = 0.14, and ξ = 0 rad. Here the true parameter values
are represented by the blue lines, and the contours show to the 1, 2
and 3σ levels of the sampled posterior distribution.

In this case we sampled the posterior distribution with
the parallel-tempered differential evolution MCMC sam-
pler adopting linear priors on each parameter of the model.
The analysis converged using 4 tempering levels with 16
walkers per level communicating every 50 MCMC steps,
and taking 10000 samples per walker. The resulting pos-
terior distributions for the parameters of this model are
shown in Figure 11 where the blue lines represent the true
parameter values of the original image.

Our analysis shows that the marginalized values for the
parameters of the model are V0 = 2.2399 ± 0.0001 Jy for
the total flux, R = 28.0064 ± 0.0054 µas for the overall
size of the crescent, with a relative thickness ψ = 0.1404±
0.0003, an asymmetry parameter τ = 0.0691±0.0005, and
a position angle ξ = 0.040◦ ± 0.023◦. Individually, these
are consistent at the 2σ-level with the true values of the
original crescent image. The model gives a satisfactory fit
to the data as confirmed by the reduced-χ2 of 0.9813 with
1670 degrees of freedom, which implies that high-quality
fits exist.

6.2.4. RIAF Model

We generated visibility amplitude and closure phase
data from a diffractively-scattered RIAF image with
(a, θ, ξ) = (0.10, 60◦, 0◦). We added thermal noise to the
simulated data and then analyze it with Themis’ SED-
fitted RIAF model (Section 4.4.1) to show that Themis
can properly recover the parameters of the original image.
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Figure 12. Joint parameter distributions for the SED-fitted
RIAF model analysis of the simulated visibility amplitude and clo-
sure phase data generated for a RIAF image with (a, cos θ, ξ) =
(0.1, 0.5, 0.0). Here the true parameter values are represented by the
blue lines, and the contours show the 1, 2 and 3-σ of the sampled
posterior distribution.

For the analysis the standard visibility amplitude and
closure phase likelihoods (Sections 5.1.2 and 5.1.3) were
used, and the effects of diffractive scattering were mod-
eled using Themis’ default scattering model (Section
4.3.1). We used the parallel-tempered differential evolu-
tion MCMC sampler with 3 tempering levels, 14 walkers
per level communicating every 50 MCMC steps, and took
5000 samples per walker.

The posterior distributions for the parameters of the
model are shown in Figure 12. We find that the
marginalized values for the black hole spin parame-

ters are a = 0.0997+0.0006
−0.0007, θ = 59.9983◦+0.0155◦

−0.0167◦ , and

ξ = 0.0017◦+0.0223◦

−0.0199◦ . These parameter estimates are con-
sistent at the 1σ-level with the true values of the original
RIAF image. In this case we find a reduced χ2 of 0.9868
with 1664 degrees of freedom, indicating that high-quality
fits were found.

6.3. Reproducing Previous Results

The variety of published analyses of EHT observations
of Sgr A∗ provides a natural validation test of Themis, as
well as a demonstration of its flexibility. These include
comparisons of purely phenomenological and physically
motivated models of the image structure. In construct-
ing these, we make use of the published EHT data sets
listed in bold in Table 1, consisting of visibility amplitudes
measured in 2007 and 2009 and closure phases measured
between 2009 and 2013, inclusively.

14.0 14.5 15.0 15.5 16.0 16.5 17.0

σ (µas)

χ2
red = 1.15, dof = 65

Figure 13. Gaussian size distribution from the analysis of the sym-
metric Gaussian model to the 2007 and 2009 visibility amplitude
data of Sgr A∗.

6.3.1. Symmetric Gaussian

We analyze the visibility amplitude data from 2007 and
2009 using the symmetric Gaussian model described in
Section 4.2.1 in order to show that Themis can reproduce
previous model fitting studies made to estimate the source
size of Sgr A∗.

For the analysis we employed the norm-marginalized
visibility amplitude likelihood described in Section 5.1.6
to account for variations in the total flux of Sgr A∗ be-
tween observation nights. The effects of diffractive scatter-
ing were modeled using Themis’ default scattering model
(Section 4.3.1).

We employed the parallel-tempered affine Invariant sam-
pler with 4 tempering levels with 32 walkers per level, and
adopted linear priors on each parameter of this model. The
posterior distribution for the intrinsic size of Sgr A∗ after
10000 MCMC iterations is shown in Figure 13. The recon-
structed size is σ = 15.73± 0.25 (FWHM = 37.05± 0.60).
The model gives a satisfactory fit to the data with an as-
sociated reduced-χ2 = 1.15 with 65 degrees of freedom.
These results are in good agreement with the best fits
found in Broderick et al. (2011) when all epochs are com-
bined, and the inferred sizes for each night reported in
Doeleman et al. (2008) and Fish et al. (2011).

6.3.2. Asymmetric Gaussian

We also analyze the visibility amplitude data from 2007
and 2009 with the asymmetric Gaussian model described
in Section 4.2.2 to show that Themis can reproduce previ-
ous studies made to probe the asymmetry of the emitting
region of Sgr A∗.

For this analysis we also analytically marginalize vari-
ations in the total flux of Sgr A∗ between observation
nights using the norm-marginalized visibility amplitude
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Figure 14. Joint parameter distributions from the analysis of the
asymmetric Gaussian model to the 2007 and 2009 visibility ampli-
tude data of Sgr A∗. The gray contours show the 1σ, 2σ, and 3σ
confidence regions for the size, the asymmetry parameter and the
position angle. For reference, the symmetric Gaussian size distri-
bution from Figure 13 is shown in red in the top left panel. These
parameter distributions are consistent with the results of (Broderick
et al. 2011).

likelihood described in Section 5.1.6, and modeled the ef-
fects of diffractive scattering using Themis’ default scat-
tering model (Section 4.3.1).

We employed the Affine Invariant sampler and adopted
linear priors on each parameter of this model. The re-
sults converge using 4 tempering levels, with 32 walk-
ers per level, and taking 20000 samples per walker. The
posterior distributions for the different parameters of the
model are shown in Figure 14. Our analysis shows that the
marginalized values for the parameters of the model are

σ = 19.07+1.07
−2.51 µas, A = 0.54+0.13

−0.18, and ξ = −64.3◦+17.0◦

−4.7◦ ,

and ξ = 114.7◦+19.2◦

−5.1◦ .
This model also gives a satisfactory fit to the data with

an associated reduced-χ2 = 0.75 with 63 degrees of free-
dom. These results are in good agreement with the best
fits found in Broderick et al. (2011) when all epochs are
combined.

6.3.3. Crescent Model

We analyze the visibility amplitude data from 2007 and
2009 with the crescent model outlined in Section 4.2.4 in
order to show that Themis can reproduce the earlier find-
ings reported by Kamruddin & Dexter (2013).

We proceeded in a similar fashion to the analysis per-
formed with the Gaussian models employing the norm-
marginalized visibility amplitude likelihood described in
Section 5.1.6 to account for variations in the total flux of
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Figure 15. Joint parameter distributions from the analysis of the
crescent model to the 2007 and 2009 visibility amplitude data of
Sgr A∗. The gray contours show the 1σ, 2σ, and 3σ confidence
regions for the overall radius, the relative thickness, the degree of
symmetry and the position angle of the crescent. These parameter
distributions are consistent with the results of (Kamruddin & Dexter
2013).

Sgr A∗ between days and modeling the effects of diffractive
scattering with the default scattering model implemented
in Themis (Section 4.3.1).

In this case we sampled posterior distribution with the
differential evolution MCMC sampler adopting linear pri-
ors on each parameter of the model. We used the reported
values in Table 1 of Kamruddin & Dexter (2013) as ini-
tial guesses for the values of the parameters of this model.
The analysis converged using 4 tempering levels with 32
walkers per level, and taking 20,000 samples per walker.
The resulting posterior distributions for the parameters of
this model are shown in Figure 15. The marginalized val-
ues for the parameters of the model are R = 29.8+4.8

−3.2µas,

ψ = 0.28+0.12
−0.17, and τ = 0.20+0.15

−0.13. In this case the analy-

sis finds two values for the position angle ξ = 60.5◦+8.4◦

−12.4◦ ,

ξ = −119.4◦+8.7◦

−13.7◦ , and a minimum reduced-χ2 = 0.76
with 62 degrees of freedom

6.3.4. RIAF Model: Visibility Amplitude Analysis

We now turn to the first example of a physical model.
First, we demonstrate Themis’ ability to reproduce the
analysis published in Broderick et al. (2011). For that pur-
pose, we analyze the visibility amplitude data of Sgr A∗

from 2007 and 2009 with the SED-fitted RIAF model de-
scribed in Section 4.4.1, using a tabulated set of accretion
flow parameters obtained at different black hole spins and



22 Broderick et al.

−1
.0
−0
.5

0.
0

0.
5

1.
0

co
s(
θ)

0.
25

0.
50

0.
75

1.
00

spin

−1
60
−8

0

0

80
16

0

ξ(
◦ )

−1
.0
−0
.5 0.

0
0.
5

1.
0

cos(θ)
−1

60 −8
0 0 80 16

0

ξ(◦)

χ2
red = 0.80, dof = 63

Figure 16. Joint parameter distributions from the analysis of the
SED-fitted RIAF model to the 2007 and 2009 visibility amplitude
data of Sgr A∗. The gray contours show the 1σ, 2σ, and 3σ confi-
dence regions for the spin magnitude, a, the cosine of the inclination,
cos θ, and the position angle, ξ. These parameter constraints are
consistent with the results of Broderick et al. (2011).

inclinations — and distributed with Themis— that repro-
duce the observed SED of Sgr A∗.

For this analysis we employed a set of linear priors for
each parameter of the model and the norm-marginalized
visibility amplitude likelihood described in Section 5.1.6
to account for variations in the total flux of Sgr A∗ be-
tween observation nights. The effects of diffractive scatter-
ing were modeled using Themis’ default scattering model
(Section 4.3.1).

We used the parallel-tempered differential evolution
MCMC sampler with 5 tempering levels and 16 walkers
per level communicating every 50 MCMC steps. The test
completed 5000 MCMC iterations and the posterior distri-
butions for the black hole spin parameters is shown in Fig-
ure 16. We find a spin a = 0.25+0.35

−0.19, while the inclination

angle has two values located at θ = 118.94◦+8.77◦

−10.02◦ , and

θ = 62.31◦+10.54◦

−9.33◦ . The model has a minimum reduced-

χ2 = 0.80 with 63 degrees of freedom. These results are
in good agreement with the best fits found in Broderick
et al. (2011) when all epochs are combined.

6.3.5. RIAF Model: Visibility Amplitude and Closure Phase

Analysis

We analyze the visibility amplitude and closure phase
data sets that are bolded in Table 1 with the SED-fitted
RIAF model described in Section 4.4.1 using 128x128 pixel
RIAF images, to show that Themis successfully repro-
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Figure 17. Joint posterior parameter distributions for the SED-
fitted RIAF model implied by the combined visibility amplitude and
closure phase data sets bolded in Table 1. For reference, the pos-
teriors implied by the visibility amplitude data alone are shown in
red. The contours show the 1σ, 2σ, and 3σ confidence regions for
the spin magnitude, a, the cosine of the inclination, cos θ, and the
position angle, ξ. All parameter constraints are consistent with the
results of Broderick et al. (2016).

duces the results of the analysis published by Broderick
et al. (2016).

For this analysis we employed the norm-marginalized
visibility amplitude likelihood described in Section 5.1.6 to
account for variations in the total flux of Sgr A∗ between
observation nights. We also used the shift-marginalized
closure phase likelihood 5.1.7 to model the effects of re-
fractive scattering, while the effects of diffractive scatter-
ing were modeled using Themis’ default scattering model
(Section 4.3.1).

We used the parallel-tempered differential evolution
MCMC sampler with 5 tempering levels and 16 walkers
per level communicating every 50 MCMC steps. The
MCMC chain was run for 8000 steps and the resulting
posterior distributions for the parameters of this model
are show in Figure 17 in comparison to the results of anal-
ysis with visibility amplitude data only discussed in the
previous section. We find that the black hole spin param-
eters are similarly constrained after the inclusion of the

closure phase data, with a = 0.09+0.11
−0.07, θ = 119.00◦+2.74◦

−2.12◦ ,

and θ = 61.55◦+1.97◦

−3.25◦ , and ξ = −165.13◦+7.42◦

−4.62◦ . In this

case we find a reduced χ2 of 1.07 with 231 degrees of free-
dom, indicating that high-quality fits were found. These
results are consistent with best fit parameters reported by
Broderick et al. (2016).
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7. New Results

In this section we present first novel results obtained
with Themis. These make use of the ability of Themis
to rapidly generate new data comparisons and/or combine
data sets in a uniform manner. Additional results obtained
by combining a more complete combination of the data
sets in Table 1 and applying additional model features
will be reported elsewhere.

7.1. Crescent model

The extensible nature of Themis makes the extension
of the analysis of the Kamruddin & Dexter (2013) cres-
cent model to include additional data trivial. We demon-
strate this by including the closure phase data sets that
are bolded in Table 1. To account for refractive scattering,
we employ the shift-marginalized closure phase likelihood
(Section 5.1.7) when including the contribution to the to-
tal likelihood from closure phases. In all other respects,
the analysis is similar to that presented in Section 6.3.3.

The inclusion of closure phase data places strong new
constraints on the crescent structure in a number of re-
spects. The resulting posterior distributions for the pa-
rameters of this model are shown in Figure 18. The con-
straints on all of the crescent parameters are substantially
improved quantitatively, often settling ambiguities in the
previous analysis. The crescent overall size has been re-
stricted to R = 46.3+1.4

−1.5 µas; the relative thickness pa-

rameter is now ψ = 0.41+0.07
−0.04; and asymmetry parameter

is τ = 0.23+0.21
−0.14. Individually, these are consistent at the

2σ-level with the expectation based on visibility ampli-
tudes alone.

Similarly, the position angle is also strongly con-
strained, with the prior degeneracy eliminated, finding

ξ = 179.4◦+19.2◦

−9.1◦ . Unlike the other parameters, this is
inconsistent with the estimates from the visibility am-
plitudes alone at the 2σ-level. This is apparent in the
bottom panels of Figure 18. This is modestly discon-
certing given the qualitatively distinct natures of the clo-
sure phases and visibility amplitudes. Nevertheless, the
reduced-χ2 = 1.01, implies that high-quality fits exist.

7.2. Extended RIAF model

The SED-fitted RIAF model treats the comparisons to
the EHT data and flux measurements differently, which
utilize a set of prior set of SED fits. Again, the exten-
sibility of Themis enables relaxing this procedure, and
comparing simultaneously to the flux and mm-VLBI mea-
surements. In principle, this may broaden the black hole
parameter estimates, trading worse SED fits for better
structural fits. To explore this we performed a new anal-
ysis, similar in spirit to that presented in Section 6.3.5, in
which we analyze both data sets concurrently.

We performed a new analysis using the extended RIAF
model described in Section 4.4.2, which generates flux
measurements in addition to the mm-VLBI observations
in a fashion identical to the SED-fitted RIAF model. In
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Figure 18. Joint posterior parameter distributions for the cres-
cent model implied by the combined visibility amplitude and closure
phase data sets bolded in Table 1. For reference, the posterior distri-
butions implied by the visibility amplitude data alone from Figure
15 are shown in red. The gray contours show the 1σ, 2σ, and 3σ
confidence regions for the overall radius, the relative thickness, the
degree of symmetry and the position angle of the crescent.

addition to the parameters describing the black hole spin
(magnitude, inclination, and position angle), three addi-
tional parameters were introduced, describing the normal-
izations of the densities (ne,t, ne,nt) and temperature (Te)
of the emitting electron population; all remaining param-
eters were held fixed at the values employed in the SED-
fitted RIAF model: ηt = −1.1, ηnt = −2.02, τt = −0.84,
ht = hnt = 1.0, α = 1.25, γmin = 100, β = 10, and κ = 0.
This model was compared to the flux and mm-VLBI data
bolded in Table 1. For this run the affine invariant sampler
with 4 tempering levels was used. There were 120 walkers
used and the MCMC chain was run for 3300 steps.

In Figure 19, the resulting set of parameter constraints
are presented in comparison to the prior analyses de-
scribed in Sections 6.3.4 and 6.3.5. In all cases, the
spacetime parameters are consistent with those found pre-
viously. Including the flux data produces a marginally
stronger constraint on the black hole spin, a = 0.1+0.19

−0.08,
arising from the systematic decrease in the quality of the
SED fits at higher spins (that was ignored in the prior
analyses). Nevertheless, as anticipated, the inclination
constraints are broadened, permitting θ = 62.2+5.3

−4.6 and

θ = 117.2+5.5
−6.2.

8. Code Performance

As seen in many of the validation tests and example
analyses presented in Sections 6 and 7, even for models
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with modest numbers of parameters, it is typical for the
posterior probability distributions to be multimodal. As
the models increase in sophistication, introducing addi-
tional physical freedoms and addressing various system-
atic uncertainties, this problem will be compounded by
the need to explore high-dimensional parameters spaces.
This is further complicated by the computational expense
of numerically generating images of realistic astrophysical
models. As a result, Themis has been designed to ex-
ploit the proliferation of modern HPC systems. Here we
discuss the ways in which this has been, and may be, im-
plemented, along with a description of Themis’s scaling
efficiency, demonstrating that it can run efficiently on very
large machines.

Themis explicitly supports parallelization via MPI, and
implicitly via OpenMP and CUDA. MPI parallelization
has been implemented at a number of levels, including
the samplers, likelihood evaluation, and model generation,
permitting users maximum flexibility in distributing the
computational workload of an analysis.

Both, the Parallel Tempered Affine Invariant and Differ-
ential Evolution MCMC sampling algorithms are designed
to exploit parallelization in two levels. First, the use of
parallel tempering levels may be further parallelized by
assigning separate tempering levels to different collections
of processors. Second, the use of ensemble methods may
be trivially parallelized among the individual walkers. Our
implementation of the ensemble sampler evolves half of the
walkers simultaneously while using the other non-evolving
half to determine the next proposed jump. Each walker in
the “active” set can be evolved on a separate CPU. Upon
completion, the “active” and “passive” sets swap, and the
process is repeated. The result is a set of samplers that
can immediately utilize NTNW /2 processors, where NT is
the number of tempering levels and NW is the number of
walkers, typically many times the number of parameters.

Image generation is an intrinsically parallelizable task.
The VRT2 library already natively supports MPI paral-
lelization and vectorization via OpenMP. On modern Xeon
based systems, VRT2 can efficiently use NL = 32 cores
to produce 128x128 pixel images before ancillary memory
and communication costs become significant. Odyssey em-
ploys GPUs via CUDA, and provides an example of mixed
MPI/GPU support within Themis. The performance of
mixed MPI/GPU computation depends mainly on the
number and specifications of the GPU cards, and is less
sensitive to the number of MPI cores. Users implementing
new Themis models are provided an MPI communicator
and are only responsible for determining if and how par-
allelization should be implemented in their instance; they
will be able to trivially exploit parallelization at the other
levels.

Figure 20 shows the scaling of Themis on a represen-
tative sample problem with NT = 4 tempering levels,
NW = 16 MCMC walkers, and NL = 32 processors per
likelihood evaluation. For this case, Themis scales with
94% efficient to 32, 88% efficient at 512 cores, and 84% at
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Figure 20. Scaling plot illustrating the multilayered parallelization
strategy in Themis: The parallelization in tempering levels (perfect
by construction) is shown in blue, the parallelization in different
walkers is shown in red, the parallelization in likelihood evaluations
(e.g. images here via calling VRT2 is shown in green. The blue, red
and green data points show the scaling of the code. The blue line
acts as a reference for perfect linear scaling.

1024 cores. Note that even modest increases in problem
complexity involving larger images or higher-dimensional
parameter spaces, require a larger set of walkers, temper-
ing levels, and allow more processors per likelihood evalu-
ation. Thus, the scaling efficiency of Themis will improve
with problem size. Already, Themis can run efficiently on
several thousand cores.

9. Summary

Themis provides a powerful new framework in which
to develop and implement analyses of EHT observations.
By focusing on the construction of interfaces, Themis
enforces a modularity that facilitates rapid future devel-
opment, ensuring flexibility and permitting extensibility.
This flexibility is illustrated by the existing set of current
Themis components, which span a wide variety of types
of data, models, and sampling techniques. The clear defi-
nition of component inputs and outputs enables future de-
velopers to rapidly contribute additional components (e.g.,
image models) without the need for a global understand-
ing of the internal structure of the code.

Implemented data types include both mm-VLBI observ-
ables (visibility amplitudes, closure phases, closure ampli-
tudes, polarization fractions) and ancillary data (fluxes).
The ability to easily add accoutrements to these data ob-
jects, e.g., time stamps, observing stations, atmospheric
conditions, observation resolution, etc., significantly in-
creases their flexibility and the potential sophistication of
subsequent analyses.

The generic nature of the model interface produces a
correspondingly broad array of acceptable models, solving
a key difficulty with unifying prior EHT analyses. As a
result, Themis can construct analyses of phenomenologi-
cal (e.g., gaussians) and physically motivated models (e.g.,
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polarized images of synchrotron-emitting GRMHD simu-
lations). It also naturally allows the inclusion of optional,
additional, independent model features (e.g., interstellar
scattering) in a uniform way. In principle, it can also fa-
cilitate in non-parametric modeling, e.g., image inversion,
though this has yet to be implemented.

A number of likelihoods have been implemented, includ-
ing likelihoods that analytically address nuisance param-
eters. This will become increasingly important as addi-
tional EHT systematics are considered, e.g., telescope gain
corrections, refractive scattering, and intrinsic source vari-
ability. Similarly, a number of samplers have been imple-
mented, including samplers that efficiently explore high-
dimensional, multimodal likelihood surfaces.

A key feature of Themis is the ability to mix and match
the above, constructing new analyses via minor changes in
the model used, data included, and sampler used. This will
be critical to evaluating the robustness of features, teasing
apart subtle interactions in aspects of complex models,
and systematically assessing the impact of additional types
of data. At the same time, this permits rapid, distributed
development: as features are added in the service of one
analysis, e.g., a new sampler or a new scattering model,
they may be rapidly deployed to others.

In anticipation of increasingly complex, physically mo-
tivated emission models for EHT targets, Themis enables
the implementation of parallelization at multiple levels
via multiple schemes. At present, this is implemented
in a number of samplers via MPI and models via MPI,
OpenMP, and CUDA. As a result, for typical analyses,
Themis scales efficiently to thousands of cores, depending
on problem complexity, and can effectively exploit mod-
ern HPC systems. For the implemented samplers, this
parallel-performance scaling improves with problem com-
plexity (i.e., number of parameters), partially mitigating
the introduction of additional physical features.

Both the individual components of Themis and their in-
tegration have been extensively tested. Themis is able to
accurately and consistently explore high-dimensional mul-
timodal posterior probability distributions. It is able to
recover the parameters of models used to construct realis-
tic simulated EHT data for both geometric and physically
motivated RIAF models. It has accurately reproduced
previous analyses of published EHT data. In the case of
the RIAF models, it has done so in an order of magnitude
less user time.

The extensibility of Themis is evident in the extension
of these prior analyses. The Kamruddin & Dexter (2013)
crescent model has been reassessed in light of the EHT
closure phase measurements of Sgr A∗ published in Fish
et al. (2016). The weak degeneracy in the size of the cres-
cent is now broken, selecting R = 46.3+1.4

−1.5 µas. This is
considerably larger than the size implied by the 1σ region
obtained when only visibility amplitude are considered,
though still consistent at 2σ. Nevertheless, high-quality
fits of the combined closure phase and prior visibility am-
plitude data sets do exist. Note that this implies a crescent

diameter that is nearly twice as large as the 55 µas antici-
pated for Sgr A∗ by identifying the crescent with the grav-
itationally lensed image of a geometrically thick accretion
flow.

Where prior RIAF analyses have separated the fitting
the SED and EHT data for Sgr A∗, Themis now sim-
plifies the process of fitting both simultaneously. While
this may yield weaker parameter constraints in princi-
ple, in practice the black hole spin parameters are sim-
ilarly constrained, with a = 0.1+0.19

−0.08; θ = 62.2+5.3
−4.6, and

θ = 117.2+5.5
−6.2; and ξ = −158.1◦+11.5◦

−10.4◦ . Future analyses
that will systematically explore the relaxation of assump-
tions about the structure of the inner accretion flow will
be published elsewhere.

Themis is meant to facilitate continuous, vigorous de-
velopment. Already, plans are underway to implement
schemes to correct individual station gains, address refrac-
tive scattering in the interstellar medium, model stochastic
variability in the intrinsic emission region, introduce jet
models, exploit GRMHD simulations, and perform non-
parametric analyses. Future data type development will
include polarized fluxes, Faraday rotation measurements,
circular polarization, visibility variances. As a result,
Themis is prepared to continue to play a fundamental
role in the scientific exploitation of the new window on
black hole physics being opened by the EHT.
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APPENDIX

A. Prediction Accuracy Requirements

When predictions are made numerically frequently the computational expense is strongly dependent on the accuracy of
the theoretical estimate required. Thus, significant efficiencies can be realized by understanding and limiting the accuracy
requested where possible. Generally, comparisons with data with large uncertainties require far less accurate theoretical
estimates than with data that has small uncertainties. Here we determine the relationship with parameter estimation
uncertainty and the accuracy of the theoretical estimates, thereby estimating the accuracy required by Themis.

We begin by assuming that the measurement errors are Gaussian. We further assume that the posterior parameter
probability is also nearly Gaussian, and thus adopt a Fisher matrix approach to the estimation of the uncertainty of the
parameter estimates. Finally, we assume that errors in the predicted values are Gaussian and uncorrelated. That is, we
set the log-likelihood to

L = −
∑
j

(fj + δj − yj)2

2σ2
j

, (A1)

where the predicted value is fj , δj is the error in the predicted value, yj are the data, and σj are the observational
uncertainties.

The assumption that the prediction errors are Gaussian corresponds to assuming that the δj are Gaussian random
variables. This is not true in an absolute sense: each time a prediction is made for the same independent variables the
δj does not change. However, in a statistical sense we are assuming that at different independent variable values and for
different parameter values the δj are well approximated by a random variable. It will be useful henceforth to characterize
the size of the distribution of the δj in terms of σj , i.e., we set the variance of the prediction error in terms of the
measurement uncertainty as 〈δ2

j 〉 = ∆2σ2
j . This implies that higher prediction accuracy is possible for more accurately

measured quantities.
The δj modify the minimum L (and thus χ2) expected: averaging over realizations of the data and the prediction errors,

〈L〉 = −
∑
j

〈
(fj − yj)2 + δ2

j

2σ2
j

〉
≈ −N

2

(
1 + ∆2

)
, (A2)

where we have further assumed the number of degrees of freedom is close to the number of data points, N . For a
sufficiently large number of degrees of freedom and a large enough ∆2, the deviation will be statistically noticeable in the
reduced χ2 when ∆ & (8/N)1/4. This expression grows slowly with N , though, and is therefore not a fundamental limit
as far as parameter estimation is concerned.

The uncertainty in the estimate of the parameters is set by the inverse of the covariance matrix, given by

Cab = − ∂2L
∂pa∂pb

=
∑
j

1

σ2
j

[
∂fj
∂pa

∂fj
∂pb

+ (fj − yj + δj)
∂2fj
∂pa∂pb

]
. (A3)

Again, averaging over realizations of the data and the prediction errors gives

〈Cab〉 =
∑
j

1

σ2
j

∂fj
∂pa

∂fj
∂pb

. (A4)

However, a typical value will be modified by the presence of the linear term. That is, the variance in the inverse covariance
is

〈(Cab)2〉 − 〈Cab〉2 =
∑
j

(1 + ∆2)

(
∂2fj
∂pa∂pb

)2

. (A5)

The covariance matrix, whose eigenvalues indicate the magnitude of the uncertainties, is given by

C−1
ab = [〈Cab〉+ δCab]

−1 ≈ 〈Cab〉−1
[
1− 〈Cab〉−1δCab

]
(A6)

where

δCab = µ

√√√√∑
j

(1 + ∆2)

(
∂2fj
∂pa∂pb

)2

≈ µ
(

1 +
∆2

2

)√√√√∑
j

(
∂2fj
∂pa∂pb

)2

(A7)
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Figure 21. Left: Comparison of the Rice and Gaussian distributions at various SNRs. Right: Distribution of products of visibility amplitudes

and their comparison to a single Rice distribution. The SNR indicates σ/W =
√
σ2
A/|VA,0|2 + σ2

B/|VB,0|2, with the range for each SNR value

corresponding to that obtained from different ways of apportioning the errors between σA/|VA,0| and σB/|VB,0|. Summaries of the accuracy
of the comparisons shown can be found in Tables 2 and 3.

in which µ is a Gaussian random variable with unit variance. This error term is suppressed by approximately a factor of
N−1/2 relative to the mean variance, and thus in the limit of large N becomes insignificant.

The error term contains two elements, associated with the measurement and prediction errors, respectively. The ratio
of the latter to the former is ∆2/2. When ∆2 is small and N is large, the uncertainty on the parameter estimates then
grows by a multiplicative factor of ∆2/4. This is unconditionally small when ∆ is small.

In Themis, we typically set ∆ = 0.25, for which ∆2/4 = 0.016, which broadens the posterior parameter distributions
by 1.6%. This does complicate the interpretation of fit quality for N & 2048, however.

B. Error Distributions of Quantities Associated with Visibility Amplitudes

Themis has three data types associated with visibility amplitudes: visibility amplitudes themselves, interferometric
polarization fractions, and closure amplitudes. The underlying error distributions of none of these is Gaussian, and the
latter two poorly approximated by Gaussians. Here, we summarize what the relevant error distributions are and quantify
how well they are approximated in Themis. In all cases, we will assume that the complex visibilities are well described
by a Gaussian random variable with non-zero mean.

B.1. Visibility Amplitudes

The probability distribution of the magnitude of a complex Gaussian random variable, V , with mean V0 and standard
deviation σ is given by the Rice distribution (see, e.g., Thompson et al. 2017):

pr(|V |; |V0|, σ) =
|V |
σ2

e−(|V |2+|V0|2)/2σ2

I0

( |V ||V0|
σ2

)
. (B8)

At high SNR (defined here by |V0|/σ), a Gaussian with mean
√
|V0|2 + σ2 and standard deviation σ becomes an increas-

ingly good proxy for the Rice distribution, with the quality of this approximation increasing with SNR. When SNR≥ 2,
the biased Gaussian in within 8% of the maximum probability of the Rice distribution for all values of |V |. These are
compared in the left panel of Figure 21 for various choices of SNR. We provide a set of quantitative estimates of the
accuracy of the of Gaussian approximation in Table 2 for various SNRs.

B.1.1. Visibility Amplitude Products

Before discussing the data quantities of interest, we begin by considering the distribution of the product of visibility
amplitudes, i.e., W = |VA||VB |. We do this both to illustrate the procedure by which we construct exact probability
distributions for combinations of products and quotients of visibility amplitudes and to show explicitly that these are
typically well-approximated by a single Rice distribution.
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Table 2. Accuracy of Visibility Amplitude Error Distribution Approximations

SNR

Approx. Notes Error 1 2 4 8 32

Gauss – δmax
a 29% 8% 2% 0.4% 0.02%

– – δmode
b 7% 1% < 0.1% < 0.1% < 0.1%

– – δw
c 15%/17% 5%/6% 2%/2% < 0.5%/0.5% < 2%/ < 1%

aMaximum absolute difference, measured relative to probability maximum.

bFractional error in the location of the mode.

cFractional error in the width of the region containing 68%/95% of the cumulative proba-

bility.

We begin by exploiting the non-negative behavior of |V | to define v = log(|V |). This simplifies the construction of the
product by reducing it to a sum, i.e., in terms of vA and vB , W = evA+vB ≡ ew. The probability distribution of v is given
in terms of the Rice distribution by

qr(v; |V0|, σ) = evpr(e
v; |V0|, σ), (B9)

which we will call the logarithmic Rice distribution. Its characteristic function is

φr(k; |V0|, σ) =

∫ ∞
−∞

e−ikvqr(v; |V0|, σ). (B10)

In practice, this may be computed efficiently via FFT. In terms of φr, the characteristic function of the probability
distribution of w is, φp(k; |VA,0|, σA, |VB,0|, σB) = φr(k; |VA,0|, σA)φr(k; |VB,0|, σB), and thus, the probability distribution
of w is

qp(w; |VA,0|, σA, |VB,0|, σB) =
1

2π

∫ ∞
−∞

eikwφr(k; |VA,0|, σA)φr(k; |VB,0|, σB), (B11)

which again may be computed efficiently via FFT. Finally, the desired probability distribution of W is then

pp(W ; |VA,0|, σA, |VB,0|, σB) = W−1qp(logW ; |VA,0|, σA, |VB,0|, σB). (B12)

These are shown in Figure 21.
While formally, the distribution of W is characterized by four parameters, in practice it is well approximated by a single

Rice distribution with W0 = |VA,0||VB,0| and σ =
√
σ2
A + σ2

B , differing by 17% of the maximum probability for SNR≥ 2.
This comparison is also shown in the right panel of Figure 21, and estimates of the accuracy of the approximation are
tabulated in Table 3 for various SNRs. Note that this also implies that the product distribution is well fit by a Gaussian
for sufficiently high SNR.

B.2. Polarization Fractions — Visibility Amplitude Quotients

We follow a similar procedure to that in the previous section to compute the distribution of the quotient of visi-
bility amplitudes, i.e., Q = |VA|/|VB |. Unfortunately, we find that the remarkable simplicity of the distribution of
visibility products does not extend to quotients. The characteristic function of the logarithmic quotient distribution is
φq(k; |VA,0|, σA, |VB,0|, σB) = φr(k; |VA,0|, σA)φ∗r(k; |VB,0|, σB), where the ∗ denotes complex conjugation. The resulting
logarithmic quotient probability distributions is

qq(q; |VA,0|, σA, |VB,0|, σB) =
1

2π

∫ ∞
−∞

eikwφr(k; |VA,0|, σA)φ∗r(k; |VB,0|, σB), (B13)

with corresponding quotient probability distribution

pq(Q; |VA,0|, σA, |VB,0|, σB) = Q−1qq(logQ; |VA,0|, σA, |VB,0|, σB). (B14)

This is directly applicable to the polarization fraction, for which this distribution is shown in the left panel of Figure 22.
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Table 3. Accuracy of Product Error Distribution Approximations

SNR

Approx. Notes Error 1 2 4 8 32

Rice SNR ratioa=1 δmax
b 33% 17% 9% 4% 1%

– – δmode
c 36% 14% 4% 1% < 0.1%

– – δw
d 16%/21% 7%/10% 2%/2% 0.6%/0.6% < 2%/ < 1%

Rice SNR ratio=4 δmax 11% 5% 2% 1% 0.2%

– – δmode 13% 4% 1.0% 0.2% < 0.1%

– – δw 4%/9% 1%/3% 0.4%/0.7% < 0.5%/ < 0.2% < 2%/ < 1%

aRatio of VA,0/σA to VB,0/σB in the construction of the product distribution.

bMaximum absolute difference, measured relative to probability maximum.

cFractional error in the location of the mode.

dFractional error in the width of the region containing 68%/95% of the cumulative probability.
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Figure 22. Left: Comparison of the polarization fraction distribution (visibility amplitude quotient distribution) with the Gaussian quotient
distribution approximate (Gauss Q) for various input values of the denominator SNR, SNRd. In all cases the numerator SNR was set to 8. For
comparison, a log-Normal distribution is also shown. Right: Comparison of the polarization fraction distribution (boundaries of the shaded
region), the Gauss Q approximation in Equation (B17), and the log-Normal model, for various total SNR (i.e., m̆/σm̆) at m̆ = 0.5 and 2.0.
Quantitative estimates of the accuracy of the various approximations can be found in Table 4.

The polarization fraction distribution clearly deviates from the Gaussian and Rice distributions in two key respects.
First, even at high SNR, the distributions are asymmetric, with the probability maximum lying below Q0 = |VA,0|/|VB,0|.
Second, there is a significant tail extending to high values of Q, containing sufficient weight to move the average Q above
Q0 for SNR≥ 2. More accurate are fitted (i.e., same mean and standard deviation) log-normal approximations, shown in
the left panel of Figure 22, which recover the asymmetry, though still exhibit deviations for SNR≤ 4.

Combined with the accuracy of the Gaussian approximation to the Rice distribution, this motivates an exploration
of better approximates to the quotient distribution of visibility amplitudes. For two Gaussian variables, with non-zero
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means, it is possible to analytically construct the quotient distribution analytically:

pGaussQ(r) =

∫
dxdy

e−(x−x̄)/2σ2
x

√
2πσx

e−(y−ȳ)2/2σ2
y

√
2πσy

δ

(
r − x

y

)
=
e−(r−r0)2/2Σ2

√
2πΣ

[
∆erf

(
∆√
2Ω

)
− 2Ω√

2π
e−∆2/2Ω2

]
where r0 ≡

x̄

ȳ
, Σ2 ≡ r2

0

σ2
x

x̄2
+ r2

σ2
y

ȳ2
, ∆ ≡ Σ−2

(
σ2
x

x̄2
+

r

r0

σ2
y

ȳ2

)
, Ω ≡ σxσy

Σx̄ȳ
,

(B15)

and erf(x) is the standard error function. This is also shown in the left panel of Figure 22. While deviations from pq
continue to exist, the Gaussian quotient (Gauss Q) distribution accurately reproduces the large high-Q tail.

As with pp(W ), pq(Q) depends on the SNR of both the numerator and denominator independently. Unlike the product
distribution, the quotient distribution is not symmetric in this dependency, with the properties of the denominator
controlling the asymmetry and tail. Therefore, characterizing this distribution by a single pair of numbers — a central
value and width — will result in a substantial uncertainty in the resulting quotient distribution. This is simplified for
polarization fractions by the fact that the stations used to construct the visibility amplitudes in the numerator and
denominator are the same, and thus both quantities have similar noise profiles in principle, i.e, σA ≈ σB . This implies
that

σA
|VA,0|

≈ 1√
1 + m̆2

0

σm̆
m̆0

and
σB
|VB,0|

≈ m̆0√
1 + m̆2

0

σm̆
m̆0

, (B16)

where m̆0 = |VA,0|/|VB,0| and σm̆ is the uncertainty obtained by the standard error propagation formula. Note that
these are the only two quantities required to fully specify the Gauss Q and quotient distributions. Combining this with
Equation (B15), we obtain for the polarization fraction,

pm̆(m̆; m̆0, σm̆) =
e−(m̆−m̆0)2/2Σ2

m̆

√
2πΣm̆

[
∆m̆erf

(
∆m̆√
2Ωm̆

)
− 2Ωm̆√

2π
e−∆2

m̆/2Ω2
m̆

]
where Σ2

m̆ = σ2
m̆

1 + m̆2

1 + m̆2
0

, ∆m̆ =
1 + m̆m̆0

1 + m̆2
, Ω2

m̆ =
σ2
m̆

(1 + m̆2)(1 + m̆2
0)
.

(B17)

For various m̆0/σm̆, the right panel of Figure 22 shows comparisons of the exact quotient and Gauss Q distributions
assuming the errors in Equation (B16) for m̆0 = 0.5 and 2.0. The Gauss Q distribution is within 11% and 13% of the
maximum probability of the exact quotient distribution, respectively, at all values of m̆ when SNR≥ 2. The accuracy of
the Gauss Q approximation for the polarization fraction distribution is tabulated for different SNRs and m̆ in Table 4.

B.3. Closure Amplitudes

We now turn to the problem of constructing the error distribution for closure amplitudes generally. Again, the exact
expression can be constructed using the characteristic functions of the logarithmic Rice distributions:

φa(k; |VA|, σA, |VB |, σB , |VC |, σC , |VD|, σD) = φr(k; |VA,0|, σA)φr(k; |VB,0|, σB)φ∗r(k; |VC,0|, σC)φ∗r(k; |VD,0|, σD), (B18)

from which we obtain

qa(a; |VA,0|, σA, . . . ) =
1

2π

∫ ∞
−∞

eikaφa(k; |VA,0|, σA, . . . ), (B19)

and
pV(V; |VA,0|, σA, . . . ) = V−1qa(logV; |VA,0|, σA, . . . ). (B20)

These are shown in the left panel of Figure 23. Similar to the polarization fractions, they are clearly asymmetric and
exhibit large tails to high values, typical of quotient distributions.

Formally, this requires knowledge of eight values to define. However, again, it is possible to accurately estimate pV
with only a handful of combinations of these value. Due to the similarity between the amplitude product distribution
(Section B.1.1) and the Rice distribution, both the numerator and the denominator can be effectively described by only
two parameters each. As a result, the closure amplitude distribution is similar to the amplitude quotient distribution
described in Section B.2, shown by the dashed lines in the left panel of Figure 23.

If the SNRs of the denominator and numerator are independently known, this is well approximated by the Gauss Q
distribution in Equation (B15). These may be reconstructed with knowledge of the total SNR (V/σV), and the ratio of

the thermal uncertainties in the numerator and denominator, i.e., σn =
√
σ2
A + σ2

B and σd =
√
σ2
C + σ2

D; also shown in
the left panel of Figure 23. The latter are not independent, related by the repeated presence of each of the four stations
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Table 4. Accuracy of Polarization Fraction Error Distribution Approximations

SNR

Approx. Notes Error 1 2 4 8 32

Gauss Q m̆0 = 0.5 δmax
a 41% 11% 5% 2% 0.6%

– – δmode
b 22% 7% 2% 0.5% < 0.1%

– – δw
c 3%/13% 5%/4% 2%/2% < 0.5%/0.4% < 2%/ < 1%

Gauss Q m̆0 = 2.0 δmax 31% 13% 6% 3% 0.6%

– – δmode 2% 2% 1% 0.4% < 0.1%

– – δw 17%/20% 13%/18% 5%/6% 1%/1% < 2%/ < 1%

log-Norm m̆0 = 0.5 δmax 41% 17% 10% 5% 1%

– – δmode 26% 0.2% 0.4% < 0.1% < 0.1%

– – δw 46%/27% 21%/29% 5%/6% 1%/2% < 2%/ < 1%

log-Norm m̆0 = 2.0 δmax 68% 48% 27% 13% 3%

– – δmode 27% 23% 9% 3% 0.2%

– – δw > 100%/63% 51%/23% 12%/3% 3%/0.6% < 2%/ < 1%

aMaximum absolute difference, measured relative to probability maximum.

bFractional error in the location of the mode.

cFractional error in the width of the region containing 68%/95% of the cumulative probability.
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Figure 23. Left: Comparison of the closure amplitude distribution with the Gauss Q approximation in Equation (B24) for various choices of
the denominator SNR, SNRd. In all cases the numerator SNR was set to 8, divided equally among the visibility amplitudes in the numerator.
For comparison, the visibility amplitude quotient (Rice Q) distribution is also shown. The range of the filled bands indicate the uncertainty
associated with various choices of how SNRd is apportioned between the two visibility amplitudes in the denominator. In all cases, the value
of ρ was set to the proper value in all models. Right: Comparison of the closure amplitude distribution and the Gauss Q approximation with
ρ = 1, for V0 = 0.5. The colored bands indicate the range of closure amplitude distributions when the true ρ is varied within the permissible
range for the 2017 EHT campaign, [0.3, 0.33]. The SNR within the numerator and denominator is distributed uniformly. Quantitative estimates
of the accuracy of the various approximations for illustrative cases can be found in Table 5.
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Figure 24. Comparison of the posterior distribution of the reconstructed size of a Gaussian from simulated closure amplitude data assuming
the Gauss Q (black) and log-Normal approximations (red). The true size is 10 µas, indicated by the blue line. An SNR cut of SNR> 4 was
applied to the data, to exclude marginal detections and improve the fidelity of the assumed approximate error distributions.

required to produce a closure amplitude in the numerator and denominator. That is, identifying the baselines A, B,
C, and D, with stations 1 and 2, 3 and 4, 1 and 4, and 2 and 3, respectively, assuming identical bandwidths and scan
duration,

ρ2 ≡ σ2
n

σ2
d

=
S1S2 + S3S4

S1S4 + S2S3
,=

1 + (S3/S1)(S4/S2)

(S4/S2) + (S3/S1)
, (B21)

where the Sj are station specific SEFDs. Despite the appearance of four SEFDs, this is a function of only two variables:
the ratios S3/S1 and S4/S2. Where both of these ratios are of order unity, i.e., for a homogeneous array, ρ ≈ 1. For
highly heterogeneous arrays, in which more than one station is much more sensitive than the others, this can deviate from
unity substantially, by an amount that depends on the second lowest and second highest SEFDs, S2nd min and S2nd max,
respectively: √

S2nd min

S2nd max
. ρ .

√
S2nd max

S2nd min
. (B22)

For the 2017 EHT campaign, the station SEFDs ranged from 90 Jy to 6000 Jy, with most being near 5000 Jy. The
phased Atacama Large Millimeter/submillimeter Array (ALMA) is an extremely low-noise outlier at 90 Jy, followed by
the Large Millimeter Telescope at 600 Jy (see the EHT imaging library, Chael et al. 2016, 2018b, and available at
github.com/achael/eht-imaging). As a result, ρ ranges from 0.3 to 3.3, with most of the potential closure amplitude
squares having ρ within 11% of unity. Therefore, even without prior knowledge about the visibilities that comprise the
numerator and denominator of the closure amplitude, a similar procedure to that used for the closure amplitudes, where
ρ ≈ 1 is assumed, is well motivated.

Given a value of ρ, either from the station SEFDs or setting it to unity,

σn
n
≈ ρ√

ρ2 + V2
0

σV
V0

and
σd
d
≈ V0√

ρ2 + V2
0

σV
V0
, (B23)

where n and d are the mean values of |VA||VB | and |VC ||VD|, and V0 = n/d. As a result, an approximation of the closure
amplitude distribution based on the Gauss Q distribution can be constructed via

pV(V;V0, σV) =
e−(V−V0)2/2Σ2

V
√

2πΣV

[
∆Verf

(
∆V√
2ΩV

)
− 2ΩV√

2π
e−∆2

V/2Ω2
V

]
where Σ2

V = σ2
V
ρ2 + V2

ρ2 + V2
0

, ∆V =
ρ2 + VV0

ρ2 + V2
, Ω2
V =

ρ2σ2
V

(ρ2 + V2)(ρ2 + V2
0 )
.

(B24)

Quantitative assessments of the performance of this approximation for a number of variations in the distribution of SNRs
among the various components and for fixed and known ρ are listed in Table 5. In the Gauss Q cases with fixed ρ and
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for the log-Normal distribution, we permit the true value of ρ to range from 0.3 to 3.3, reporting the maximum deviation
for each measure independently.

Knowledge of ρ significantly improves the quality of the approximation, which for SNR≥ 2 is accurate to 13% for
V < 1. The asymmetric impact of noise in the denominator and numerator of the closure amplitude is responsible for the
worsening performance of the approximation when the V > 1; generally, closure amplitudes can be constructed so that
V . 1. The performance of the approximation in reconstructing the mode and width of the distribution is very good
in this limit, better than 1%. When ρ is not known a priori, setting it to unity introduces an additional error in the
approximation of the closure amplitude distribution. Nevertheless, even with excursions of a factor of 3, by SNR≥ 4, the
Gauss Q approximation is accurate to 13% at all V.

In practice, the primary difficulty with applying Equation (B24) is the accuracy with which σn/n and σd/d can be
reconstructed, which depends how close V is to V0. At low SNR, this can lead to a significant error in the estimation
of the likelihood. Where the estimate of σn/n or σd/d are higher than their true values, this makes little difference.
However, where they are much lower than their true values, this can result in a distribution that is considerably more
narrowly concentrated about V0 than the true distribution, biasing any resulting parameter estimates. This ceases to be
a significant bias for SNR> 4 for the 2017 campaign.

Finally, we remark on comparisons to a frequent alternative approximation for the closure amplitude error distribution,
the log-Normal distribution. This has a number of desirable features: it is simple to define and rapid to compute, it
eliminates the conceptual distribution between the numerator and denominator in the definition of the closure amplitudes,
and naturally produces extended tails toward large values. A quantitative comparison to the Gauss Q approximation is
presented in Table 5. To do so, we have constructed a biased log-Normal distribution, i.e., with mean log(V0 +σ2

V/V0) and
standard deviation σV/V0. These perform more poorly than the Gauss Q approximation at all values of SNR, exhibiting
significant biases in the maximum and median of the error distributions.

At high SNRs, this distinction makes little difference; for modest SNRs, this results in significant systematic biases in
reconstructed structural parameters. This is clear in Figure 24, which presents the posterior distributions of the size of
a Gaussian feature from simulated 2017 campaign data. The underlying image and thermal noise were chosen such that
the SNRs of the closure amplitudes are moderate, i.e., they range from below our cutoff of 4 to 18. The two posteriors
shown are for two likelihoods that differ in the assumed closure amplitude error distribution. For both, excellent fits are
obtained. However, in the latter case, when a log-Normal distribution is assumed, a notable and systematic bias towards
more compact structures is present. For this reason, we adopt the modestly more complicated Gauss Q distribution.

C. Gaussian-Prior-Modified Levenberg-Marquardt Algorithm

To numerically maximize the likelihood during the reconstruction and marginalization over station gain reconstructions
(Section 5.1.8), we employ a modified Levenberg-Marquardt algorithm that includes Gaussian priors on the gains. We
follow §15 of Press et al. (1992), in which algorithms to minimize a χ2 are presented. The appropriately modified expression
for the χ2, accounting for a Gaussian prior on the parameters, is

χ̃2(g) = χ2(g) +
∑
A

g2
A

Σ2
A

, (C25)

where g, gA and ΣA are all defined in Section 5.1.8, and the additional term is the Gaussian prior directly. The associated
modified definitions of βA and αAB (defined in 15.5.8 of Press et al. 1992) are

β̃A = −1

2

∂χ̃2

∂gA
= βA −

gA
Σ2
A

(C26)

and

α̃AB =
1

2

∂2χ̃2

∂gA∂gB
= αAB +

δAB
Σ2
A

. (C27)

The expression for αAB is simplified further in 15.5.11 of Press et al. (1992), though we continue to adopt the above
modification. All other elements of the Levenberg-Marquardt algorithm are unchanged.
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Table 5. Accuracy of Closure Amplitude Error Distribution Approximations

SNR

Approx. Notes Error 1 2 4 8 32

Gauss Q V0 = 0.5, δmax
a 54% 28% 13% 6% 2%

ρ = 1b SNRn,d ratiosc=0.5, δmode
d 38% 17% 6% 2% < 0.1%

– ρ ∈ [0.3, 3.3]e δw
f 15%/14% 14%/11% 6%/8% 2%/4% < 2%/ < 1%

Gauss Q V0 = 0.5, δmax 54% 28% 13% 6% 2%

ρ = 1 SNRn,d ratios=2, δmode 38% 17% 6% 2% < 0.1%

– ρ ∈ [0.3, 3.3] δw 15%/14% 14%/11% 6%/8% 2%/4% < 2%/ < 1%

Gauss Q V0 = 2.0, δmax 47% 25% 13% 6% 2%

ρ = 1 SNRn,d ratios=0.5, δmode 25% 17% 6% 2% < 0.1%

– ρ ∈ [0.3, 3.3] δw 15%/5% 5%/26% 4%/15% 2%/5% < 2%/ < 1%

Gauss Q V0 = 2.0, δmax 47% 25% 13% 6% 2%

ρ = 1 SNRn,d ratios=2, δmode 25% 17% 6% 2% < 0.1%

– ρ ∈ [0.3, 3.3] δw 15%/5% 5%/26% 4%/15% 2%/5% < 2%/ < 1%

Gauss Q V0 = 0.5, δmax 53% 13% 6% 2% 0.6%

ρ setg SNRn,d ratios=0.5, δmode 5% 0.6% < 0.1% < 0.1% < 0.1%

– ρ = 3.3 δw 9%/0.6% 0.4%/5% 0.5%/0.1% < 0.5%/ < 0.2% < 2%/ < 1%

Gauss Q V0 = 0.5, δmax 53% 13% 6% 2% 0.6%

ρ set SNRn,d ratios=2, δmode 5% 0.6% < 0.1% < 0.1% < 0.1%

– ρ = 3.3 δw 9%/0.6% 0.4%/5% 0.5%/0.1% < 0.5%/ < 0.2% < 2%/ < 1%

Gauss Q V0 = 2.0, δmax 46% 20% 8% 3% 0.6%

ρ set SNRn,d ratios=0.5, δmode 15% 3% 0.4% < 0.1% < 0.1%

– ρ = 0.3 δw 5%/6% 5%/16% 3%/10% 0.9%/2% < 2%/ < 1%

Gauss Q V0 = 2.0, δmax 46% 20% 8% 3% 0.6%

ρ set SNRn,d ratios=2, δmode 15% 3% 0.4% < 0.1% < 0.1%

– ρ = 0.3 δw 5%/6% 5%/16% 3%/10% 0.9%/2% < 2%/ < 1%

log-Norm V = 0.5, δmax 64% 43% 23% 11% 3%

– SNRn,d ratios=0.5, δmode 36% 22% 8% 2% < 0.1%

– ρ ∈ [0.3, 3.3] δw 62%/28% 32%/38% 10%/13% 3%/5% < 2%/ < 1%

log-Norm V = 0.5, δmax 64% 43% 23% 11% 3%

– SNRn,d ratios=2, δmode 36% 22% 8% 2% < 0.1%

– ρ ∈ [0.3, 3.3] δw 62%/28% 32%/38% 10%/13% 3%/5% < 2%/ < 1%

log-Norm V = 2.0, δmax 76% 52% 29% 14% 3%

– SNRn,d ratios=0.5, δmode 42% 27% 10% 3% 0.2%

– ρ ∈ [0.3, 3.3] δw > 100%/40% 41%/32% 12%/11% 4%/5% < 2%/ < 1%

log-Norm V = 2.0, δmax 76% 52% 29% 14% 3%

– SNRn,d ratios=2, δmode 42% 27% 10% 3% 0.2%

– ρ ∈ [0.3, 3.3] δw > 100%/40% 41%/32% 12%/11% 4%/5% < 2%/ < 1%

aMaximum absolute difference, measured relative to probability maximum.

bGauss Q model with ρ fixed at unity.

cRatio of VA,0/σA to VB,0/σB and VC,0/σC to VD,0/σD in the construction of the closure amplitude distribution.

dFractional error in the location of the mode.

eRange of input values of ρ explored in accuracy estimate.

fFractional error in the width of the region containing 68%/95% of the cumulative probability.

gGauss Q model with ρ set to input value.


